ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07366
  4. Cited By
Neural Ordinary Differential Equations

Neural Ordinary Differential Equations

19 June 2018
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
    AI4CE
ArXivPDFHTML

Papers citing "Neural Ordinary Differential Equations"

33 / 931 papers shown
Title
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
33
290
0
29 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGen
PINN
21
44
0
27 May 2019
Neural Jump Stochastic Differential Equations
Neural Jump Stochastic Differential Equations
J. Jia
Austin R. Benson
BDL
20
222
0
24 May 2019
Neural ODEs with stochastic vector field mixtures
Neural ODEs with stochastic vector field mixtures
Niall Twomey
Michał Kozłowski
Raúl Santos-Rodríguez
14
4
0
23 May 2019
Enforcing constraints for time series prediction in supervised,
  unsupervised and reinforcement learning
Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning
P. Stinis
AI4TS
AI4CE
25
11
0
17 May 2019
Unsupervised Machine Learning for the Discovery of Latent Disease
  Clusters and Patient Subgroups Using Electronic Health Records
Unsupervised Machine Learning for the Discovery of Latent Disease Clusters and Patient Subgroups Using Electronic Health Records
Yanshan Wang
Yiqing Zhao
T. Therneau
E. Atkinson
A. Tafti
Yi Yu
S. Amin
A. Limper
Hongfang Liu
OOD
16
86
0
17 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
14
141
0
07 May 2019
On Scalable and Efficient Computation of Large Scale Optimal Transport
On Scalable and Efficient Computation of Large Scale Optimal Transport
Yujia Xie
Minshuo Chen
Haoming Jiang
T. Zhao
H. Zha
OT
11
42
0
01 May 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
22
27
0
17 Apr 2019
A Selective Overview of Deep Learning
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
28
136
0
10 Apr 2019
IMEXnet: A Forward Stable Deep Neural Network
IMEXnet: A Forward Stable Deep Neural Network
E. Haber
Keegan Lensink
Eran Treister
Lars Ruthotto
33
40
0
06 Mar 2019
Towards Robust ResNet: A Small Step but A Giant Leap
Towards Robust ResNet: A Small Step but A Giant Leap
Jingfeng Zhang
Bo Han
L. Wynter
K. H. Low
Mohan S. Kankanhalli
16
41
0
28 Feb 2019
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural
  ODEs
ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs
A. Gholami
Kurt Keutzer
George Biros
28
166
0
27 Feb 2019
Learning Dynamical Systems from Partial Observations
Learning Dynamical Systems from Partial Observations
Ibrahim Ayed
Emmanuel de Bézenac
Arthur Pajot
J. Brajard
Patrick Gallinari
AI4TS
30
89
0
26 Feb 2019
Wireless Network Intelligence at the Edge
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
21
518
0
07 Dec 2018
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep
  Network
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
31
542
0
30 Nov 2018
Controllability, Multiplexing, and Transfer Learning in Networks using
  Evolutionary Learning
Controllability, Multiplexing, and Transfer Learning in Networks using Evolutionary Learning
R. Ooi
Chao-Han Huck Yang
Pin-Yu Chen
V. Eguíluz
N. Kiani
Hector Zenil
D. Gómez-Cabrero
Jesper N. Tegnér
18
1
0
14 Nov 2018
Data Driven Governing Equations Approximation Using Deep Neural Networks
Data Driven Governing Equations Approximation Using Deep Neural Networks
Tong Qin
Kailiang Wu
D. Xiu
PINN
21
270
0
13 Nov 2018
Invertible Residual Networks
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
20
618
0
02 Nov 2018
Using Deep Learning to Extend the Range of Air-Pollution Monitoring and
  Forecasting
Using Deep Learning to Extend the Range of Air-Pollution Monitoring and Forecasting
Philipp Haehnel
Jakub Mareˇcek
Julien Monteil
Fearghal O'Donncha
AI4CE
20
39
0
22 Oct 2018
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear
  Bayesian Filtering: A New Perspective
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Filip Tronarp
Hans Kersting
Simo Särkkä
Philipp Hennig
25
63
0
08 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
13
31
0
05 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
17
849
0
02 Oct 2018
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework
  for Assimilating Flow Visualization Data
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
11
158
0
13 Aug 2018
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
  Memory (LSTM) Network
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
A. Sherstinsky
13
3,595
0
09 Aug 2018
A Mean-Field Optimal Control Formulation of Deep Learning
A Mean-Field Optimal Control Formulation of Deep Learning
Weinan E
Jiequn Han
Qianxiao Li
OOD
6
181
0
03 Jul 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Deep Neural Networks Motivated by Partial Differential Equations
Deep Neural Networks Motivated by Partial Differential Equations
Lars Ruthotto
E. Haber
AI4CE
27
483
0
12 Apr 2018
Poly-Spline Finite Element Method
Poly-Spline Finite Element Method
T. Schneider
Jérémie Dumas
Xifeng Gao
Mario Botsch
Daniele Panozzo
Denis Zorin
AI4CE
28
40
0
09 Apr 2018
Enforcing constraints for interpolation and extrapolation in Generative
  Adversarial Networks
Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks
P. Stinis
Tobias J. Hagge
A. Tartakovsky
Enoch Yeung
GAN
AI4CE
43
33
0
22 Mar 2018
Convolutional Neural Networks combined with Runge-Kutta Methods
Convolutional Neural Networks combined with Runge-Kutta Methods
Mai Zhu
Bo Chang
Chong Fu
AI4CE
33
52
0
24 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank D. Wood
TPM
26
46
0
01 Dec 2017
Recurrent Neural Networks for Multivariate Time Series with Missing
  Values
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
213
1,897
0
06 Jun 2016
Previous
123...171819