Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07808
Cited By
Learning One-hidden-layer ReLU Networks via Gradient Descent
20 June 2018
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning One-hidden-layer ReLU Networks via Gradient Descent"
36 / 86 papers shown
Title
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
6
33
0
16 Jun 2020
Agnostic Learning of a Single Neuron with Gradient Descent
Spencer Frei
Yuan Cao
Quanquan Gu
MLT
16
59
0
29 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Piecewise linear activations substantially shape the loss surfaces of neural networks
Fengxiang He
Bohan Wang
Dacheng Tao
ODL
20
28
0
27 Mar 2020
Tune smarter not harder: A principled approach to tuning learning rates for shallow nets
Thulasi Tholeti
Sheetal Kalyani
13
4
0
22 Mar 2020
On the Global Convergence of Training Deep Linear ResNets
Difan Zou
Philip M. Long
Quanquan Gu
18
37
0
02 Mar 2020
A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks
Zixiang Chen
Yuan Cao
Quanquan Gu
Tong Zhang
MLT
19
10
0
10 Feb 2020
Sharp Rate of Convergence for Deep Neural Network Classifiers under the Teacher-Student Setting
Tianyang Hu
Zuofeng Shang
Guang Cheng
19
19
0
19 Jan 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
14
168
0
19 Dec 2019
Tight Sample Complexity of Learning One-hidden-layer Convolutional Neural Networks
Yuan Cao
Quanquan Gu
MLT
12
19
0
12 Nov 2019
Time/Accuracy Tradeoffs for Learning a ReLU with respect to Gaussian Marginals
Surbhi Goel
Sushrut Karmalkar
Adam R. Klivans
10
53
0
04 Nov 2019
Growing axons: greedy learning of neural networks with application to function approximation
Daria Fokina
Ivan V. Oseledets
9
18
0
28 Oct 2019
Nearly Minimal Over-Parametrization of Shallow Neural Networks
Armin Eftekhari
Chaehwan Song
V. Cevher
8
1
0
09 Oct 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
21
161
0
25 Aug 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
16
230
0
11 Jun 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
6
124
0
27 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
8
33
0
23 May 2019
Theory III: Dynamics and Generalization in Deep Networks
Andrzej Banburski
Q. Liao
Brando Miranda
Lorenzo Rosasco
Fernanda De La Torre
Jack Hidary
T. Poggio
AI4CE
19
3
0
12 Mar 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
9
155
0
04 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
20
961
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
11
93
0
24 Jan 2019
Fitting ReLUs via SGD and Quantized SGD
Seyed Mohammadreza Mousavi Kalan
Mahdi Soltanolkotabi
A. Avestimehr
8
24
0
19 Jan 2019
Convex Relaxations of Convolutional Neural Nets
Burak Bartan
Mert Pilanci
12
5
0
31 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
11
446
0
21 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
M. Tomizuka
ODL
13
1,120
0
09 Nov 2018
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
10
51
0
25 Oct 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
13
117
0
17 Oct 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
25
57
0
16 Oct 2018
Learning One-hidden-layer Neural Networks under General Input Distributions
Weihao Gao
Ashok Vardhan Makkuva
Sewoong Oh
Pramod Viswanath
MLT
25
28
0
09 Oct 2018
Efficiently testing local optimality and escaping saddles for ReLU networks
Chulhee Yun
S. Sra
Ali Jadbabaie
22
10
0
28 Sep 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
22
131
0
14 Aug 2018
Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy
H. Fu
Yuejie Chi
Yingbin Liang
FedML
11
39
0
18 Feb 2018
Small nonlinearities in activation functions create bad local minima in neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
ODL
15
93
0
10 Feb 2018
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
121
117
0
08 Jul 2017
Benefits of depth in neural networks
Matus Telgarsky
125
602
0
14 Feb 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
177
1,185
0
30 Nov 2014
Previous
1
2