Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07811
Cited By
Stochastic Nested Variance Reduction for Nonconvex Optimization
20 June 2018
Dongruo Zhou
Pan Xu
Quanquan Gu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Nested Variance Reduction for Nonconvex Optimization"
23 / 23 papers shown
Title
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
58
0
0
08 Oct 2024
Cubic regularized subspace Newton for non-convex optimization
Jim Zhao
Aurélien Lucchi
N. Doikov
20
5
0
24 Jun 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
30
4
0
16 May 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
38
3
0
19 Mar 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
23
1
0
09 Nov 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
24
0
0
02 Jun 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
16
1
0
28 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
44
6
0
02 Jan 2023
Whole Brain Segmentation with Full Volume Neural Network
Yeshu Li
Jianwei Cui
Yilun Sheng
Xiao Liang
Jingdong Wang
E. Chang
Yan Xu
27
11
0
29 Oct 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
15
25
0
25 Jun 2021
ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method
Zhize Li
28
14
0
21 Mar 2021
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
24
125
0
25 Aug 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
27
17
0
11 Feb 2020
Stochastic First-order Methods for Convex and Nonconvex Functional Constrained Optimization
Digvijay Boob
Qi Deng
Guanghui Lan
39
92
0
07 Aug 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
17
33
0
01 May 2019
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
33
567
0
04 Jul 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
31
116
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
42
52
0
12 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,198
0
16 Aug 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
175
1,185
0
30 Nov 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
76
736
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
60
317
0
18 Feb 2014
1