ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01613
  4. Cited By
Conditional Neural Processes

Conditional Neural Processes

4 July 2018
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Conditional Neural Processes"

16 / 116 papers shown
Title
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Sequential Neural Processes
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
32
81
0
24 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard E. Turner
24
240
0
18 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
J. Gardner
UQCV
BDL
27
3
0
31 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
21
29
0
28 May 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
29
127
0
15 May 2019
Meta-learning of Sequential Strategies
Meta-learning of Sequential Strategies
Pedro A. Ortega
Jane X. Wang
Mark Rowland
Tim Genewein
Z. Kurth-Nelson
...
Yee Whye Teh
H. V. Hasselt
Nando de Freitas
M. Botvinick
Shane Legg
OffRL
22
96
0
08 May 2019
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Andrew N. Carr
David Wingate
BDL
37
12
0
26 Feb 2019
Adaptive Posterior Learning: few-shot learning with a surprise-based
  memory module
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
Tiago Ramalho
M. Garnelo
BDL
30
77
0
07 Feb 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
36
429
0
17 Jan 2019
Neural Processes Mixed-Effect Models for Deep Normative Modeling of
  Clinical Neuroimaging Data
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
24
25
0
12 Dec 2018
Fast Context Adaptation via Meta-Learning
Fast Context Adaptation via Meta-Learning
L. Zintgraf
K. Shiarlis
Vitaly Kurin
Katja Hofmann
Shimon Whiteson
18
37
0
08 Oct 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard E. Turner
BDL
45
263
0
24 May 2018
Contextual Explanation Networks
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric P. Xing
CML
32
82
0
29 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,684
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Previous
123