Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01622
Cited By
Neural Processes
4 July 2018
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Processes"
46 / 96 papers shown
Title
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
19
139
0
20 Dec 2021
A Probabilistic Hard Attention Model For Sequentially Observed Scenes
Samrudhdhi B. Rangrej
James J. Clark
24
12
0
15 Nov 2021
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
16
8
0
10 Nov 2021
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
25
36
0
20 Oct 2021
How Neural Processes Improve Graph Link Prediction
Huidong Liang
Junbin Gao
AI4CE
33
13
0
30 Sep 2021
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous Meta-Learning
Zhe Wang
J. E. Grigsby
Arshdeep Sekhon
Yanjun Qi
47
4
0
27 Sep 2021
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
33
86
0
14 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
24
1
0
05 Jul 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
17
19
0
21 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
26
78
0
03 Mar 2021
Context-Aware Safe Reinforcement Learning for Non-Stationary Environments
Baiming Chen
Zuxin Liu
Jiacheng Zhu
Mengdi Xu
Wenhao Ding
Ding Zhao
17
35
0
02 Jan 2021
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
28
30
0
25 Nov 2020
Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Himabindu Lakkaraju
Finale Doshi-Velez
UQCV
BDL
17
16
0
21 Oct 2020
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
18
11
0
09 Oct 2020
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank D. Wood
UQCV
BDL
AI4CE
11
4
0
08 Oct 2020
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
M. Wuthrich
Stefan Bauer
Yash Sharma
Yoshua Bengio
Bernhard Schölkopf
21
14
0
13 Jul 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
21
3
0
15 Jun 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
17
12
0
17 Mar 2020
Model Inversion Networks for Model-Based Optimization
Aviral Kumar
Sergey Levine
OffRL
22
93
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
28
997
0
22 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
18
14
0
05 Nov 2019
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard E. Turner
BDL
19
162
0
29 Oct 2019
Probabilistic Trajectory Prediction for Autonomous Vehicles with Attentive Recurrent Neural Process
Jiacheng Zhu
Shenghao Qin
Wenshuo Wang
Ding Zhao
17
10
0
17 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
19
38
0
17 Oct 2019
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
OOD
BDL
UQCV
19
54
0
27 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
32
81
0
24 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
23
77
0
19 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard E. Turner
24
240
0
18 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
J. Gardner
UQCV
BDL
27
3
0
31 May 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
16
289
0
29 May 2019
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
21
29
0
28 May 2019
Texture Fields: Learning Texture Representations in Function Space
Michael Oechsle
L. Mescheder
Michael Niemeyer
Thilo Strauss
Andreas Geiger
3DH
3DV
33
296
0
17 May 2019
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
20
127
0
15 May 2019
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
33
429
0
17 Jan 2019
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
22
25
0
12 Dec 2018
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Emilien Dupont
S. Suresha
26
14
0
08 Oct 2018
HG-DAgger: Interactive Imitation Learning with Human Experts
Michael Kelly
Chelsea Sidrane
Katherine Driggs-Campbell
Mykel J. Kochenderfer
OffRL
11
218
0
05 Oct 2018
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
167
666
0
07 Jun 2018
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard E. Turner
BDL
42
263
0
24 May 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
36
1,303
0
12 Mar 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
86
271
0
24 Feb 2014
Previous
1
2