ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.01622
  4. Cited By
Neural Processes

Neural Processes

4 July 2018
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
    BDL
    UQCV
    GP
ArXivPDFHTML

Papers citing "Neural Processes"

46 / 96 papers shown
Title
Continual Learning of Multi-modal Dynamics with External Memory
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
19
139
0
20 Dec 2021
A Probabilistic Hard Attention Model For Sequentially Observed Scenes
A Probabilistic Hard Attention Model For Sequentially Observed Scenes
Samrudhdhi B. Rangrej
James J. Clark
24
12
0
15 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
16
8
0
10 Nov 2021
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Data-Driven Offline Optimization For Architecting Hardware Accelerators
Aviral Kumar
Amir Yazdanbakhsh
Milad Hashemi
Kevin Swersky
Sergey Levine
25
36
0
20 Oct 2021
How Neural Processes Improve Graph Link Prediction
How Neural Processes Improve Graph Link Prediction
Huidong Liang
Junbin Gao
AI4CE
33
13
0
30 Sep 2021
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
  Meta-Learning
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous Meta-Learning
Zhe Wang
J. E. Grigsby
Arshdeep Sekhon
Yanjun Qi
47
4
0
27 Sep 2021
Conservative Objective Models for Effective Offline Model-Based
  Optimization
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
33
86
0
14 Jul 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
24
1
0
05 Jul 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
17
19
0
21 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
26
78
0
03 Mar 2021
Context-Aware Safe Reinforcement Learning for Non-Stationary
  Environments
Context-Aware Safe Reinforcement Learning for Non-Stationary Environments
Baiming Chen
Zuxin Liu
Jiacheng Zhu
Mengdi Xu
Wenhao Ding
Ding Zhao
17
35
0
02 Jan 2021
Equivariant Learning of Stochastic Fields: Gaussian Processes and
  Steerable Conditional Neural Processes
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
28
30
0
25 Nov 2020
Incorporating Interpretable Output Constraints in Bayesian Neural
  Networks
Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Himabindu Lakkaraju
Finale Doshi-Velez
UQCV
BDL
17
16
0
21 Oct 2020
Few-shot Learning for Spatial Regression
Few-shot Learning for Spatial Regression
Tomoharu Iwata
Yusuke Tanaka
18
11
0
09 Oct 2020
Uncertainty in Neural Processes
Uncertainty in Neural Processes
Saeid Naderiparizi
Ke-Li Chiu
Benjamin Bloem-Reddy
Frank D. Wood
UQCV
BDL
AI4CE
11
4
0
08 Oct 2020
S2RMs: Spatially Structured Recurrent Modules
S2RMs: Spatially Structured Recurrent Modules
Nasim Rahaman
Anirudh Goyal
Muhammad Waleed Gondal
M. Wuthrich
Stefan Bauer
Yash Sharma
Yoshua Bengio
Bernhard Schölkopf
21
14
0
13 Jul 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
21
3
0
15 Jun 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
17
12
0
17 Mar 2020
Model Inversion Networks for Model-Based Optimization
Model Inversion Networks for Model-Based Optimization
Aviral Kumar
Sergey Levine
OffRL
22
93
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
28
997
0
22 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
18
14
0
05 Nov 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard E. Turner
BDL
19
162
0
29 Oct 2019
Probabilistic Trajectory Prediction for Autonomous Vehicles with
  Attentive Recurrent Neural Process
Probabilistic Trajectory Prediction for Autonomous Vehicles with Attentive Recurrent Neural Process
Jiacheng Zhu
Shenghao Qin
Wenshuo Wang
Ding Zhao
17
10
0
17 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
19
38
0
17 Oct 2019
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Uncertainty in Model-Agnostic Meta-Learning using Variational Inference
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
OOD
BDL
UQCV
19
54
0
27 Jul 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Sequential Neural Processes
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
32
81
0
24 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
23
77
0
19 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard E. Turner
24
240
0
18 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
J. Gardner
UQCV
BDL
27
3
0
31 May 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
16
289
0
29 May 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
21
29
0
28 May 2019
Texture Fields: Learning Texture Representations in Function Space
Texture Fields: Learning Texture Representations in Function Space
Michael Oechsle
L. Mescheder
Michael Niemeyer
Thilo Strauss
Andreas Geiger
3DH
3DV
33
296
0
17 May 2019
Meta reinforcement learning as task inference
Meta reinforcement learning as task inference
Jan Humplik
Alexandre Galashov
Leonard Hasenclever
Pedro A. Ortega
Yee Whye Teh
N. Heess
OffRL
20
127
0
15 May 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
33
429
0
17 Jan 2019
Neural Processes Mixed-Effect Models for Deep Normative Modeling of
  Clinical Neuroimaging Data
Neural Processes Mixed-Effect Models for Deep Normative Modeling of Clinical Neuroimaging Data
S. M. Kia
A. Marquand
22
25
0
12 Dec 2018
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Emilien Dupont
S. Suresha
26
14
0
08 Oct 2018
HG-DAgger: Interactive Imitation Learning with Human Experts
HG-DAgger: Interactive Imitation Learning with Human Experts
Michael Kelly
Chelsea Sidrane
Katherine Driggs-Campbell
Mykel J. Kochenderfer
OffRL
11
218
0
05 Oct 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
167
666
0
07 Jun 2018
Meta-Learning Probabilistic Inference For Prediction
Meta-Learning Probabilistic Inference For Prediction
Jonathan Gordon
J. Bronskill
Matthias Bauer
Sebastian Nowozin
Richard E. Turner
BDL
42
263
0
24 May 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
36
1,303
0
12 Mar 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
329
11,681
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
86
271
0
24 Feb 2014
Previous
12