ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02582
  4. Cited By
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences

6 July 2018
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
    GP
    BDL
ArXivPDFHTML

Papers citing "Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences"

12 / 62 papers shown
Title
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
23
126
0
15 Sep 2020
Deterministic error bounds for kernel-based learning techniques under
  bounded noise
Deterministic error bounds for kernel-based learning techniques under bounded noise
E. Maddalena
Paul Scharnhorst
Colin N. Jones
17
45
0
10 Aug 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
19
54
0
30 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
27
82
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
43
42
0
01 Apr 2020
Information Directed Sampling for Linear Partial Monitoring
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
11
46
0
25 Feb 2020
On the optimality of kernels for high-dimensional clustering
On the optimality of kernels for high-dimensional clustering
L. C. Vankadara
D. Ghoshdastidar
26
11
0
01 Dec 2019
Uncertainty Estimates for Ordinal Embeddings
Uncertainty Estimates for Ordinal Embeddings
Michael Lohaus
Philipp Hennig
U. V. Luxburg
30
6
0
27 Jun 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
24
16
0
22 Feb 2019
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
Previous
12