ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02582
  4. Cited By
Gaussian Processes and Kernel Methods: A Review on Connections and
  Equivalences

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences

6 July 2018
Motonobu Kanagawa
Philipp Hennig
Dino Sejdinovic
Bharath K. Sriperumbudur
    GP
    BDL
ArXivPDFHTML

Papers citing "Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences"

50 / 62 papers shown
Title
Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
Manish Prajapat
Johannes Köhler
Amon Lahr
Andreas Krause
M. Zeilinger
38
0
0
12 May 2025
Computation-Aware Kalman Filtering and Smoothing
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
86
3
0
13 Mar 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
43
0
0
02 Mar 2025
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
114
2
0
29 Oct 2024
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
34
1
0
18 Oct 2024
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
3
0
04 Oct 2024
Meta-Analysis with Untrusted Data
Meta-Analysis with Untrusted Data
Shiva Kaul
Geoffrey J. Gordon
CML
32
1
0
12 Jul 2024
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Hyperparameter Optimization for Randomized Algorithms: A Case Study on Random Features
Oliver R. A. Dunbar
Nicholas H. Nelsen
Maya Mutic
30
5
0
30 Jun 2024
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes
  for Parallel-in-Time Solvers
Nearest Neighbors GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
32
1
0
20 May 2024
Global Safe Sequential Learning via Efficient Knowledge Transfer
Global Safe Sequential Learning via Efficient Knowledge Transfer
Cen-You Li
Olaf Duennbier
Marc Toussaint
Barbara Rakitsch
Christoph Zimmer
52
2
0
22 Feb 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
23
0
0
31 Dec 2023
Posterior Contraction Rates for Matérn Gaussian Processes on
  Riemannian Manifolds
Posterior Contraction Rates for Matérn Gaussian Processes on Riemannian Manifolds
Paul Rosa
Viacheslav Borovitskiy
Alexander Terenin
Judith Rousseau
30
7
0
19 Sep 2023
Distributionally Robust Model-based Reinforcement Learning with Large
  State Spaces
Distributionally Robust Model-based Reinforcement Learning with Large State Spaces
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Yifan Hu
Andreas Krause
Ilija Bogunovic
OOD
42
10
0
05 Sep 2023
Mind the spikes: Benign overfitting of kernels and neural networks in
  fixed dimension
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
35
14
0
23 May 2023
Alignment of Density Maps in Wasserstein Distance
Alignment of Density Maps in Wasserstein Distance
A. Singer
Ruiyi Yang
25
8
0
21 May 2023
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
  Models
Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics Models
Jia-Jie Zhu
21
0
0
27 Apr 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
29
5
0
11 Apr 2023
Reproducing kernel Hilbert spaces in the mean field limit
Reproducing kernel Hilbert spaces in the mean field limit
Christian Fiedler
Michael Herty
M. Rom
C. Segala
Sebastian Trimpe
27
6
0
28 Feb 2023
Introduction To Gaussian Process Regression In Bayesian Inverse
  Problems, With New ResultsOn Experimental Design For Weighted Error Measures
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
34
4
0
09 Feb 2023
Bandit Convex Optimisation Revisited: FTRL Achieves O~(t1/2)\tilde{O}(t^{1/2})O~(t1/2) Regret
David Young
D. Leith
Georgios Iosifidis
13
0
0
01 Feb 2023
(Private) Kernelized Bandits with Distributed Biased Feedback
(Private) Kernelized Bandits with Distributed Biased Feedback
Fengjiao Li
Xingyu Zhou
Bo Ji
33
5
0
28 Jan 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
44
0
0
26 Jan 2023
Statistical Optimality of Divide and Conquer Kernel-based Functional
  Linear Regression
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
17
9
0
20 Nov 2022
On the Multidimensional Augmentation of Fingerprint Data for Indoor
  Localization in A Large-Scale Building Complex Based on Multi-Output Gaussian
  Process
On the Multidimensional Augmentation of Fingerprint Data for Indoor Localization in A Large-Scale Building Complex Based on Multi-Output Gaussian Process
Zhe Tang
Sihao Li
Kyeong Soo Kim
Jeremy Smith
11
0
0
19 Nov 2022
Isotropic Gaussian Processes on Finite Spaces of Graphs
Isotropic Gaussian Processes on Finite Spaces of Graphs
Viacheslav Borovitskiy
Mohammad Reza Karimi
Vignesh Ram Somnath
Andreas Krause
35
7
0
03 Nov 2022
Optimisation & Generalisation in Networks of Neurons
Optimisation & Generalisation in Networks of Neurons
Jeremy Bernstein
AI4CE
24
2
0
18 Oct 2022
Locally Smoothed Gaussian Process Regression
Locally Smoothed Gaussian Process Regression
Davit Gogolashvili
B. Kozyrskiy
Maurizio Filippone
16
8
0
18 Oct 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
D. Meunier
Mattes Mollenhauer
A. Gretton
30
46
0
02 Aug 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
37
6
0
16 Jul 2022
Learning nonparametric ordinary differential equations from noisy data
Learning nonparametric ordinary differential equations from noisy data
Kamel Lahouel
Michael Wells
Victor Rielly
Ethan Lew
David M Lovitz
Bruno Michel Jedynak
26
5
0
30 Jun 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in
  Noisy Bayesian Optimization
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
17
4
0
10 May 2022
Instance-Dependent Regret Analysis of Kernelized Bandits
Instance-Dependent Regret Analysis of Kernelized Bandits
S. Shekhar
T. Javidi
13
3
0
12 Mar 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
21
1
0
10 Mar 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zhilin Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
26
14
0
24 Feb 2022
Data-Driven Chance Constrained Control using Kernel Distribution
  Embeddings
Data-Driven Chance Constrained Control using Kernel Distribution Embeddings
Adam J. Thorpe
T. Lew
Meeko Oishi
Marco Pavone
25
21
0
08 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
25
18
0
08 Feb 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
11
8
0
31 Jan 2022
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent:
  Convergence Guarantees and Empirical Benefits
Gaussian Process Inference Using Mini-batch Stochastic Gradient Descent: Convergence Guarantees and Empirical Benefits
Hao Chen
Lili Zheng
Raed Al Kontar
Garvesh Raskutti
20
3
0
19 Nov 2021
Misspecified Gaussian Process Bandit Optimization
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
53
42
0
09 Nov 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
  Safety-Critical Applications
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
24
18
0
06 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
31
51
0
20 Aug 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
26
12
0
22 Jun 2021
Locality defeats the curse of dimensionality in convolutional
  teacher-student scenarios
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
30
31
0
16 Jun 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
26
65
0
06 May 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
53
19
0
22 Apr 2021
Small Sample Spaces for Gaussian Processes
Small Sample Spaces for Gaussian Processes
Toni Karvonen
14
13
0
04 Mar 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Stable ResNet
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
12
Next