ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02588
  4. Cited By
Generative Probabilistic Novelty Detection with Adversarial Autoencoders

Generative Probabilistic Novelty Detection with Adversarial Autoencoders

6 July 2018
Stanislav Pidhorskyi
Ranya Almohsen
Donald Adjeroh
Gianfranco Doretto
    UQCV
ArXivPDFHTML

Papers citing "Generative Probabilistic Novelty Detection with Adversarial Autoencoders"

31 / 31 papers shown
Title
Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey
Large Language Models for Anomaly and Out-of-Distribution Detection: A Survey
Ruiyao Xu
Kaize Ding
57
5
0
17 Feb 2025
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
29
4
0
13 Nov 2023
GRAM: An Interpretable Approach for Graph Anomaly Detection using
  Gradient Attention Maps
GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps
Yifei Yang
Peng Wang
Xiaofan He
Dongmian Zou
14
5
0
10 Nov 2023
Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains
Maxime Di Folco
Cosmin I. Bercea
J. Schnabel
25
0
0
24 Jul 2023
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
LINe: Out-of-Distribution Detection by Leveraging Important Neurons
Yong Hyun Ahn
Gyeong-Moon Park
Seong Tae Kim
OODD
113
31
0
24 Mar 2023
On the Connection of Generative Models and Discriminative Models for
  Anomaly Detection
On the Connection of Generative Models and Discriminative Models for Anomaly Detection
Jingxuan Pang
Chunguang Li
23
0
0
16 Nov 2022
Is Out-of-Distribution Detection Learnable?
Is Out-of-Distribution Detection Learnable?
Zhen Fang
Yixuan Li
Jie Lu
Jiahua Dong
Bo Han
Feng Liu
OODD
30
124
0
26 Oct 2022
GAPX: Generalized Autoregressive Paraphrase-Identification X
GAPX: Generalized Autoregressive Paraphrase-Identification X
Yi Zhou
Renyu Li
Hayden Housen
Ser-Nam Lim
BDL
27
0
0
05 Oct 2022
Out-of-Distribution Detection with Semantic Mismatch under Masking
Out-of-Distribution Detection with Semantic Mismatch under Masking
Yijun Yang
Ruiyuan Gao
Qiang Xu
OODD
14
27
0
31 Jul 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution
  Detection
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection
Umar Khalid
Ashkan Esmaeili
Nazmul Karim
Nazanin Rahnavard
OODD
37
12
0
06 Apr 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODD
OOD
31
3
0
19 Mar 2022
Keeping Deep Lithography Simulators Updated: Global-Local Shape-Based
  Novelty Detection and Active Learning
Keeping Deep Lithography Simulators Updated: Global-Local Shape-Based Novelty Detection and Active Learning
Hao-Chiang Shao
Hsing-Lei Ping
Kuo-shiuan Chen
Weng-Tai Su
Chia-Wen Lin
Shao-Yun Fang
Pin-Yian Tsai
Yan-Hsiu Liu
30
7
0
24 Jan 2022
Classifying Turbulent Environments via Machine Learning
Classifying Turbulent Environments via Machine Learning
M. Buzzicotti
F. Bonaccorso
18
0
0
03 Jan 2022
Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on
  Data Contamination
Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination
Jongmin Yu
Hyeontaek Oh
Minkyung Kim
Junsik Kim
22
10
0
28 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
185
875
0
21 Oct 2021
Offline Reinforcement Learning as Anti-Exploration
Offline Reinforcement Learning as Anti-Exploration
Shideh Rezaeifar
Robert Dadashi
Nino Vieillard
Léonard Hussenot
Olivier Bachem
Olivier Pietquin
M. Geist
OffRL
32
51
0
11 Jun 2021
Fair Normalizing Flows
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
13
36
0
10 Jun 2021
Autoencoding Under Normalization Constraints
Autoencoding Under Normalization Constraints
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODD
UQCV
27
38
0
12 May 2021
Towards Open World Object Detection
Towards Open World Object Detection
K. J. Joseph
Salman Khan
F. Khan
V. Balasubramanian
ObjD
24
448
0
03 Mar 2021
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
23
4
0
05 Oct 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
36
50
0
16 Jul 2020
Modeling the Distribution of Normal Data in Pre-Trained Deep Features
  for Anomaly Detection
Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection
Oliver Rippel
Patrick Mertens
Dorit Merhof
24
236
0
28 May 2020
Interpreting Rate-Distortion of Variational Autoencoder and Using Model
  Uncertainty for Anomaly Detection
Interpreting Rate-Distortion of Variational Autoencoder and Using Model Uncertainty for Anomaly Detection
Seonho Park
George Adosoglou
P. Pardalos
DRL
UQCV
34
16
0
05 May 2020
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty
  Detection
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection
Mohammadreza Salehi
Atrin Arya
Barbod Pajoum
Mohammad Otoofi
Amirreza Shaeiri
M. Rohban
Hamid R. Rabiee
AAML
26
62
0
12 Mar 2020
Detecting Out-of-Distribution Inputs in Deep Neural Networks Using an
  Early-Layer Output
Detecting Out-of-Distribution Inputs in Deep Neural Networks Using an Early-Layer Output
Vahdat Abdelzad
Krzysztof Czarnecki
Rick Salay
Taylor Denouden
Sachin Vernekar
Buu Phan
OODD
19
45
0
23 Oct 2019
Out-of-distribution Detection in Classifiers via Generation
Out-of-distribution Detection in Classifiers via Generation
Sachin Vernekar
Ashish Gaurav
Vahdat Abdelzad
Taylor Denouden
Rick Salay
Krzysztof Czarnecki
OODD
19
83
0
09 Oct 2019
Out-of-domain Detection for Natural Language Understanding in Dialog
  Systems
Out-of-domain Detection for Natural Language Understanding in Dialog Systems
Yinhe Zheng
Guanyi Chen
Minlie Huang
18
121
0
09 Sep 2019
Spatio-Temporal Adversarial Learning for Detecting Unseen Falls
Spatio-Temporal Adversarial Learning for Detecting Unseen Falls
Shehroz S. Khan
Jacob Nogas
Alex Mihailidis
22
22
0
19 May 2019
Multi-class Novelty Detection Using Mix-up Technique
Multi-class Novelty Detection Using Mix-up Technique
Supritam Bhattacharjee
Devraj Mandal
Soma Biswas
22
14
0
11 May 2019
Analysis of Confident-Classifiers for Out-of-distribution Detection
Analysis of Confident-Classifiers for Out-of-distribution Detection
Sachin Vernekar
Ashish Gaurav
Taylor Denouden
Buu Phan
Vahdat Abdelzad
Rick Salay
Krzysztof Czarnecki
OODD
14
18
0
27 Apr 2019
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,547
0
25 Jan 2016
1