ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03907
  4. Cited By
The Limit Points of (Optimistic) Gradient Descent in Min-Max
  Optimization

The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization

11 July 2018
C. Daskalakis
Ioannis Panageas
ArXivPDFHTML

Papers citing "The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization"

40 / 40 papers shown
Title
Convergence of Time-Averaged Mean Field Gradient Descent Dynamics for Continuous Multi-Player Zero-Sum Games
Convergence of Time-Averaged Mean Field Gradient Descent Dynamics for Continuous Multi-Player Zero-Sum Games
Yulong Lu
Pierre Monmarché
MLT
29
0
0
12 May 2025
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
6
0
28 Jan 2025
Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms
Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms
Yang Cai
Gabriele Farina
Julien Grand-Clément
Christian Kroer
Chung-Wei Lee
Haipeng Luo
Weiqiang Zheng
47
6
0
15 Jun 2024
Universal randomised signatures for generative time series modelling
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
40
4
0
14 Jun 2024
Decentralized Online Learning in General-Sum Stackelberg Games
Decentralized Online Learning in General-Sum Stackelberg Games
Yaolong Yu
Haipeng Chen
27
0
0
06 May 2024
Multi-agent Reinforcement Learning: A Comprehensive Survey
Multi-agent Reinforcement Learning: A Comprehensive Survey
Dom Huh
Prasant Mohapatra
AI4CE
30
8
0
15 Dec 2023
Generating Less Certain Adversarial Examples Improves Robust Generalization
Generating Less Certain Adversarial Examples Improves Robust Generalization
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
40
1
0
06 Oct 2023
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
24
0
0
02 Jun 2023
Offline Policy Evaluation and Optimization under Confounding
Offline Policy Evaluation and Optimization under Confounding
Chinmaya Kausik
Yangyi Lu
Kevin Tan
Maggie Makar
Yixin Wang
Ambuj Tewari
OffRL
18
8
0
29 Nov 2022
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player
  Zero-Sum Games
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games
Kenshi Abe
Kaito Ariu
Mitsuki Sakamoto
Kenta Toyoshima
Atsushi Iwasaki
26
11
0
21 Aug 2022
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for
  Minimax Optimization
HessianFR: An Efficient Hessian-based Follow-the-Ridge Algorithm for Minimax Optimization
Yihang Gao
Huafeng Liu
Michael K. Ng
Mingjie Zhou
17
2
0
23 May 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
40
73
0
04 May 2022
Distributed Statistical Min-Max Learning in the Presence of Byzantine
  Agents
Distributed Statistical Min-Max Learning in the Presence of Byzantine Agents
Arman Adibi
A. Mitra
George J. Pappas
Hamed Hassani
19
3
0
07 Apr 2022
Do learned representations respect causal relationships?
Do learned representations respect causal relationships?
Lan Wang
Vishnu Naresh Boddeti
NAI
CML
OOD
29
6
0
02 Apr 2022
Learning the conditional law: signatures and conditional GANs in
  filtering and prediction of diffusion processes
Learning the conditional law: signatures and conditional GANs in filtering and prediction of diffusion processes
Fabian Germ
Marc Sabate Vidales
DiffM
18
0
0
01 Apr 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
16
3
0
14 Feb 2022
Near-Optimal No-Regret Learning for Correlated Equilibria in
  Multi-Player General-Sum Games
Near-Optimal No-Regret Learning for Correlated Equilibria in Multi-Player General-Sum Games
Ioannis Anagnostides
C. Daskalakis
Gabriele Farina
Maxwell Fishelson
Noah Golowich
T. Sandholm
48
53
0
11 Nov 2021
Uncoupled Bandit Learning towards Rationalizability: Benchmarks,
  Barriers, and Algorithms
Uncoupled Bandit Learning towards Rationalizability: Benchmarks, Barriers, and Algorithms
Jibang Wu
Haifeng Xu
Fan Yao
22
1
0
10 Nov 2021
Sig-Wasserstein GANs for Time Series Generation
Sig-Wasserstein GANs for Time Series Generation
Hao Ni
Lukasz Szpruch
Marc Sabate Vidales
Baoren Xiao
Magnus Wiese
Shujian Liao
SyDa
AI4TS
19
73
0
01 Nov 2021
Adversarial Representation Learning With Closed-Form Solvers
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Naresh Boddeti
34
5
0
12 Sep 2021
Tighter Analysis of Alternating Stochastic Gradient Method for
  Stochastic Nested Problems
Tighter Analysis of Alternating Stochastic Gradient Method for Stochastic Nested Problems
Tianyi Chen
Yuejiao Sun
W. Yin
24
33
0
25 Jun 2021
Understanding and Mitigating Accuracy Disparity in Regression
Understanding and Mitigating Accuracy Disparity in Regression
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
Han Zhao
16
25
0
24 Feb 2021
Friedrichs Learning: Weak Solutions of Partial Differential Equations
  via Deep Learning
Friedrichs Learning: Weak Solutions of Partial Differential Equations via Deep Learning
Fan Chen
J. Huang
Chunmei Wang
Haizhao Yang
15
30
0
15 Dec 2020
Information Obfuscation of Graph Neural Networks
Information Obfuscation of Graph Neural Networks
Peiyuan Liao
Han Zhao
Keyulu Xu
Tommi Jaakkola
Geoffrey J. Gordon
Stefanie Jegelka
Ruslan Salakhutdinov
AAML
15
34
0
28 Sep 2020
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
A Convergent and Dimension-Independent Min-Max Optimization Algorithm
Vijay Keswani
Oren Mangoubi
Sushant Sachdeva
Nisheeth K. Vishnoi
13
1
0
22 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
16
11
0
16 Jun 2020
The limits of min-max optimization algorithms: convergence to spurious
  non-critical sets
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
V. Cevher
27
81
0
16 Jun 2020
The Landscape of the Proximal Point Method for Nonconvex-Nonconcave
  Minimax Optimization
The Landscape of the Proximal Point Method for Nonconvex-Nonconcave Minimax Optimization
Benjamin Grimmer
Haihao Lu
Pratik Worah
Vahab Mirrokni
26
9
0
15 Jun 2020
On the Impossibility of Global Convergence in Multi-Loss Optimization
On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
13
32
0
26 May 2020
GANs May Have No Nash Equilibria
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
20
43
0
21 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
11
0
0
04 Feb 2020
Accelerating Smooth Games by Manipulating Spectral Shapes
Accelerating Smooth Games by Manipulating Spectral Shapes
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
33
48
0
02 Jan 2020
Towards Better Understanding of Adaptive Gradient Algorithms in
  Generative Adversarial Nets
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu
Youssef Mroueh
Jerret Ross
Wei Zhang
Xiaodong Cui
Payel Das
Tianbao Yang
ODL
30
63
0
26 Dec 2019
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and
  Algorithms
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms
K. Zhang
Zhuoran Yang
Tamer Basar
36
1,178
0
24 Nov 2019
A Decentralized Proximal Point-type Method for Saddle Point Problems
A Decentralized Proximal Point-type Method for Saddle Point Problems
Weijie Liu
Aryan Mokhtari
Asuman Ozdaglar
S. Pattathil
Zebang Shen
Nenggan Zheng
59
30
0
31 Oct 2019
Poincaré Recurrence, Cycles and Spurious Equilibria in
  Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
MLT
9
41
0
28 Oct 2019
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum
  Linear Quadratic Games
Policy Optimization Provably Converges to Nash Equilibria in Zero-Sum Linear Quadratic Games
K. Zhang
Zhuoran Yang
Tamer Basar
16
125
0
31 May 2019
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring
  for Minimax Problems
ODE Analysis of Stochastic Gradient Methods with Optimism and Anchoring for Minimax Problems
Ernest K. Ryu
Kun Yuan
W. Yin
14
36
0
26 May 2019
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Tengyuan Liang
J. Stokes
27
211
0
16 Feb 2018
First-order Methods Almost Always Avoid Saddle Points
First-order Methods Almost Always Avoid Saddle Points
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
90
82
0
20 Oct 2017
1