ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.11254
  4. Cited By
Extreme Network Compression via Filter Group Approximation

Extreme Network Compression via Filter Group Approximation

30 July 2018
Bo Peng
Wenming Tan
Zheyang Li
Shun Zhang
Di Xie
Shiliang Pu
ArXivPDFHTML

Papers citing "Extreme Network Compression via Filter Group Approximation"

17 / 17 papers shown
Title
Learnable Heterogeneous Convolution: Learning both topology and strength
Learnable Heterogeneous Convolution: Learning both topology and strength
Rongzhen Zhao
Zhenzhi Wu
Qikun Zhang
17
6
0
13 Jan 2023
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search
Zhewen Yu
C. Bouganis
8
4
0
22 Aug 2022
Update Compression for Deep Neural Networks on the Edge
Update Compression for Deep Neural Networks on the Edge
Bo Chen
A. Bakhshi
Gustavo E. A. P. A. Batista
Brian Ng
Tat-Jun Chin
16
17
0
09 Mar 2022
SMOF: Squeezing More Out of Filters Yields Hardware-Friendly CNN Pruning
SMOF: Squeezing More Out of Filters Yields Hardware-Friendly CNN Pruning
Yanli Liu
Bochen Guan
Qinwen Xu
Weiyi Li
Shuxue Quan
17
2
0
21 Oct 2021
Carrying out CNN Channel Pruning in a White Box
Carrying out CNN Channel Pruning in a White Box
Yu-xin Zhang
Mingbao Lin
Chia-Wen Lin
Jie Chen
Feiyue Huang
Yongjian Wu
Yonghong Tian
R. Ji
VLM
31
58
0
24 Apr 2021
Lottery Jackpots Exist in Pre-trained Models
Lottery Jackpots Exist in Pre-trained Models
Yu-xin Zhang
Mingbao Lin
Yan Wang
Fei Chao
Rongrong Ji
30
15
0
18 Apr 2021
Self-grouping Convolutional Neural Networks
Self-grouping Convolutional Neural Networks
Qingbei Guo
Xiaojun Wu
J. Kittler
Zhiquan Feng
17
22
0
29 Sep 2020
Transform Quantization for CNN (Convolutional Neural Network)
  Compression
Transform Quantization for CNN (Convolutional Neural Network) Compression
Sean I. Young
Wang Zhe
David S. Taubman
B. Girod
MQ
17
69
0
02 Sep 2020
Reparameterizing Convolutions for Incremental Multi-Task Learning
  without Task Interference
Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference
Menelaos Kanakis
David Brüggemann
Suman Saha
Stamatios Georgoulis
Anton Obukhov
Luc Van Gool
CLL
22
72
0
24 Jul 2020
T-Basis: a Compact Representation for Neural Networks
T-Basis: a Compact Representation for Neural Networks
Anton Obukhov
M. Rakhuba
Stamatios Georgoulis
Menelaos Kanakis
Dengxin Dai
Luc Van Gool
22
27
0
13 Jul 2020
Lossless Compression of Deep Neural Networks
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
24
56
0
01 Jan 2020
Learning Filter Basis for Convolutional Neural Network Compression
Learning Filter Basis for Convolutional Neural Network Compression
Yawei Li
Shuhang Gu
Luc Van Gool
Radu Timofte
SupR
9
269
0
23 Aug 2019
Similarity-Preserving Knowledge Distillation
Similarity-Preserving Knowledge Distillation
Frederick Tung
Greg Mori
39
957
0
23 Jul 2019
Weight Normalization based Quantization for Deep Neural Network
  Compression
Weight Normalization based Quantization for Deep Neural Network Compression
Wenhong Cai
Wu-Jun Li
16
14
0
01 Jul 2019
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural
  Networks
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks
Jiashi Li
Q. Qi
Jingyu Wang
Ce Ge
Yujian Betterest Li
Zhangzhang Yue
Haifeng Sun
BDL
CML
11
53
0
28 May 2019
Recent Advances in Object Detection in the Age of Deep Convolutional
  Neural Networks
Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks
Shivang Agarwal
Jean Ogier du Terrail
F. Jurie
ObjD
16
122
0
10 Sep 2018
Filter Distillation for Network Compression
Filter Distillation for Network Compression
Xavier Suau
Luca Zappella
N. Apostoloff
13
38
0
20 Jul 2018
1