ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.01606
  4. Cited By
Learning monocular depth estimation with unsupervised trinocular
  assumptions

Learning monocular depth estimation with unsupervised trinocular assumptions

5 August 2018
Matteo Poggi
Fabio Tosi
S. Mattoccia
    MDE
ArXivPDFHTML

Papers citing "Learning monocular depth estimation with unsupervised trinocular assumptions"

29 / 29 papers shown
Title
Survey on Monocular Metric Depth Estimation
Survey on Monocular Metric Depth Estimation
Jiuling Zhang
VLM
69
0
0
21 Jan 2025
Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus
Jinchang Zhang
Ningning Xu
Hao Zhang
Guoyu Lu
MDE
47
0
0
18 Sep 2024
GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for
  Indoor Scenes
GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for Indoor Scenes
Chaoqiang Zhao
Matteo Poggi
Fabio Tosi
Lei Zhou
Qiyu Sun
Yang Tang
S. Mattoccia
MDE
28
14
0
26 Sep 2023
DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
Xingyu Miao
Yang Bai
Haoran Duan
Yawen Huang
Fan Wan
Xinxing Xu
Yang Long
Yefeng Zheng
MDE
21
16
0
14 Aug 2023
The Monocular Depth Estimation Challenge
The Monocular Depth Estimation Challenge
Jaime Spencer
Chao Qian
Chris Russell
Simon Hadfield
E. Graf
...
Fabio Tosi
Hao Wang
Youming Zhang
Yusheng Zhang
Chaoqiang Zhao
MDE
22
20
0
22 Nov 2022
UDepth: Fast Monocular Depth Estimation for Visually-guided Underwater
  Robots
UDepth: Fast Monocular Depth Estimation for Visually-guided Underwater Robots
Boxiao Yu
Jiayi Wu
M. Islam
MDE
15
37
0
26 Sep 2022
MonoViT: Self-Supervised Monocular Depth Estimation with a Vision
  Transformer
MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer
Chaoqiang Zhao
Youming Zhang
Matteo Poggi
Fabio Tosi
Xianda Guo
Zheng Zhu
Guan Huang
Yang Tang
S. Mattoccia
ViT
MDE
39
174
0
06 Aug 2022
Deconstructing Self-Supervised Monocular Reconstruction: The Design
  Decisions that Matter
Deconstructing Self-Supervised Monocular Reconstruction: The Design Decisions that Matter
Jaime Spencer Martin
Chris Russell
Simon Hadfield
Richard Bowden
MDE
32
22
0
02 Aug 2022
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation
Mu He
Le Hui
Yikai Bian
J. Ren
Jin Xie
Jian Yang
MDE
30
54
0
25 Jul 2022
Self-Supervised Depth Estimation with Isometric-Self-Sample-Based
  Learning
Self-Supervised Depth Estimation with Isometric-Self-Sample-Based Learning
Geonho Cha
Hoyong Jang
Dongyoon Wee
13
1
0
20 May 2022
GeoRefine: Self-Supervised Online Depth Refinement for Accurate Dense
  Mapping
GeoRefine: Self-Supervised Online Depth Refinement for Accurate Dense Mapping
Pan Ji
Qingan Yan
Yuxin Ma
Yi Tian Xu
MDE
34
11
0
03 May 2022
Disentangling Object Motion and Occlusion for Unsupervised Multi-frame
  Monocular Depth
Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth
Ziyue Feng
Liang Yang
Longlong Jing
Haiyan Wang
Yingli Tian
Bing Li
MDE
26
62
0
29 Mar 2022
Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
  Monocular Depth Estimation
Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised Monocular Depth Estimation
Zhengming Zhou
Qiulei Dong
MDE
7
16
0
21 Mar 2022
ChiTransformer:Towards Reliable Stereo from Cues
ChiTransformer:Towards Reliable Stereo from Cues
Qing Su
Shihao Ji
MDE
ViT
18
12
0
09 Mar 2022
PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
  Depth Estimation with Neural Positional Encoding and Distilled Matting Loss
PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View Depth Estimation with Neural Positional Encoding and Distilled Matting Loss
J. P. Bello
Munchurl Kim
3DV
MDE
35
47
0
12 Mar 2021
Forget About the LiDAR: Self-Supervised Depth Estimators with MED
  Probability Volumes
Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes
Juan Luis Gonzalez
Munchurl Kim
26
84
0
09 Aug 2020
Project to Adapt: Domain Adaptation for Depth Completion from Noisy and
  Sparse Sensor Data
Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data
A. L. Rodríguez
Benjamin Busam
K. Mikolajczyk
34
44
0
03 Aug 2020
The Edge of Depth: Explicit Constraints between Segmentation and Depth
The Edge of Depth: Explicit Constraints between Segmentation and Depth
Shengjie Zhu
Garrick Brazil
Xiaoming Liu
MDE
17
104
0
01 Apr 2020
Distilled Semantics for Comprehensive Scene Understanding from Videos
Distilled Semantics for Comprehensive Scene Understanding from Videos
Fabio Tosi
Filippo Aleotti
Pierluigi Zama Ramirez
Matteo Poggi
Samuele Salti
Luigi Di Stefano
S. Mattoccia
MDE
19
76
0
31 Mar 2020
Monocular Depth Prediction through Continuous 3D Loss
Monocular Depth Prediction through Continuous 3D Loss
Minghan Zhu
M. G. Jadidi
Yuanxin Zhong
Pingping Lu
Zhong Cao
Ryan Eustice
H. Peng
3DH
3DPC
3DV
MDE
15
4
0
21 Mar 2020
Monocular Depth Estimation Based On Deep Learning: An Overview
Monocular Depth Estimation Based On Deep Learning: An Overview
Chaoqiang Zhao
Qiyu Sun
Chongzhen Zhang
Yang Tang
Feng Qian
MDE
65
251
0
14 Mar 2020
Perception and Navigation in Autonomous Systems in the Era of Learning:
  A Survey
Perception and Navigation in Autonomous Systems in the Era of Learning: A Survey
Yang Tang
Chaoqiang Zhao
Jianrui Wang
Chongzhen Zhang
Qiyu Sun
Weixing Zheng
W. Du
Feng Qian
Jürgen Kurths
18
65
0
08 Jan 2020
SteReFo: Efficient Image Refocusing with Stereo Vision
SteReFo: Efficient Image Refocusing with Stereo Vision
Benjamin Busam
Matthieu Hog
Steven G. McDonagh
Greg Slabaugh
VGen
MDE
17
33
0
29 Sep 2019
Enhancing self-supervised monocular depth estimation with traditional
  visual odometry
Enhancing self-supervised monocular depth estimation with traditional visual odometry
Lorenzo Andraghetti
Panteleimon Myriokefalitakis
Pier Luigi Dovesi
Belén Luque
Matteo Poggi
Alessandro Pieropan
S. Mattoccia
MDE
33
41
0
08 Aug 2019
Learning to Adapt for Stereo
Learning to Adapt for Stereo
A. Tonioni
Oscar Rahnama
Thomas Joy
Luigi Di Stefano
Thalaiyasingam Ajanthan
Philip H. S. Torr
11
83
0
05 Apr 2019
Unsupervised Learning of Monocular Depth Estimation with Bundle
  Adjustment, Super-Resolution and Clip Loss
Unsupervised Learning of Monocular Depth Estimation with Bundle Adjustment, Super-Resolution and Clip Loss
Lipu Zhou
Jiamin Ye
Montiel Abello
Shengze Wang
Michael Kaess
MDE
26
27
0
08 Dec 2018
Real-time self-adaptive deep stereo
Real-time self-adaptive deep stereo
A. Tonioni
Fabio Tosi
Matteo Poggi
S. Mattoccia
Luigi Di Stefano
16
265
0
12 Oct 2018
Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU
Matteo Poggi
Filippo Aleotti
Fabio Tosi
S. Mattoccia
MDE
18
156
0
29 Jun 2018
Deep Ordinal Regression Network for Monocular Depth Estimation
Deep Ordinal Regression Network for Monocular Depth Estimation
Huan Fu
Biwei Huang
Chaohui Wang
Kayhan Batmanghelich
Dacheng Tao
MDE
194
1,708
0
06 Jun 2018
1