ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03856
  4. Cited By
Neural Importance Sampling
v1v2v3v4v5 (latest)

Neural Importance Sampling

11 August 2018
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
ArXiv (abs)PDFHTML

Papers citing "Neural Importance Sampling"

50 / 185 papers shown
Title
DNS SLAM: Dense Neural Semantic-Informed SLAM
DNS SLAM: Dense Neural Semantic-Informed SLAM
Kunyi Li
Michael Niemeyer
Nassir Navab
F. Tombari
107
19
0
30 Nov 2023
Rare Event Probability Learning by Normalizing Flows
Rare Event Probability Learning by Normalizing Flows
Zhenggqi Gao
Dinghuai Zhang
Luca Daniel
Duane S. Boning
72
3
0
29 Oct 2023
Variational autoencoder with weighted samples for high-dimensional
  non-parametric adaptive importance sampling
Variational autoencoder with weighted samples for high-dimensional non-parametric adaptive importance sampling
J. Demange-Chryst
François Bachoc
Jérome Morio
Timothé Krauth
56
2
0
13 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
125
49
0
04 Oct 2023
Manifold Path Guiding for Importance Sampling Specular Chains
Manifold Path Guiding for Importance Sampling Specular Chains
Zhimin Fan
Pengpei Hong
Jie Guo
Changqing Zou
Yanwen Guo
Ling-Qi Yan
29
7
0
24 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum
  chromodynamics
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
88
26
0
03 Sep 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
72
8
0
04 Aug 2023
Deep Generative Models, Synthetic Tabular Data, and Differential
  Privacy: An Overview and Synthesis
Deep Generative Models, Synthetic Tabular Data, and Differential Privacy: An Overview and Synthesis
Conor Hassan
Roberto Salomone
Kerrie Mengersen
81
6
0
28 Jul 2023
AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars
  Using 2D Diffusion
AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars Using 2D Diffusion
Shuo Huang
Zongxin Yang
Liangting Li
Yi Yang
Jia Jia
DiffM
61
28
0
13 Jul 2023
Neural Free-Viewpoint Relighting for Glossy Indirect Illumination
Neural Free-Viewpoint Relighting for Glossy Indirect Illumination
N. Raghavan
Yan Xiao
Kai-En Lin
Tiancheng Sun
Sai Bi
Zexiang Xu
Tzu-Mao Li
R. Ramamoorthi
60
9
0
12 Jul 2023
NeuBTF: Neural fields for BTF encoding and transfer
NeuBTF: Neural fields for BTF encoding and transfer
Carlos Rodriguez-Pardo
Konstantinos Kazatzis
Jorge López-Moreno
Elena Garces
AI4CE
84
9
0
03 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
101
2
0
01 Jun 2023
Neural LerPlane Representations for Fast 4D Reconstruction of Deformable
  Tissues
Neural LerPlane Representations for Fast 4D Reconstruction of Deformable Tissues
Chen Yang
Kai Wang
Yuehao Wang
Xiaokang Yang
Wei Shen
68
41
0
31 May 2023
Flow Matching for Scalable Simulation-Based Inference
Flow Matching for Scalable Simulation-Based Inference
Maximilian Dax
J. Wildberger
Simon Buchholz
Stephen R. Green
Jakob H. Macke
Bernhard Schölkopf
89
60
0
26 May 2023
Joint Optimization of Triangle Mesh, Material, and Light from Neural Fields with Neural Radiance Cache
Joint Optimization of Triangle Mesh, Material, and Light from Neural Fields with Neural Radiance Cache
Jiakai Sun
Zhanjie Zhang
Tianyi Chu
Guangyuan Li
Lei Zhao
Lei Zhao
Wei Xing
84
2
0
26 May 2023
Normalizing flow sampling with Langevin dynamics in the latent space
Normalizing flow sampling with Langevin dynamics in the latent space
Florentin Coeurdoux
N. Dobigeon
P. Chainais
DRL
45
7
0
20 May 2023
Bounded KRnet and its applications to density estimation and
  approximation
Bounded KRnet and its applications to density estimation and approximation
Lisheng Zeng
Xiaoliang Wan
Tao Zhou
59
5
0
15 May 2023
Real-Time Neural Appearance Models
Real-Time Neural Appearance Models
Tizian Zeltner
Fabrice Rousselle
A. Weidlich
Petrik Clarberg
Jan Novák
Benedikt Bitterli
Alex Evans
Tomás Davidovic
Simon Kallweit
Aaron E. Lefohn
3DHAI4CE
102
19
0
04 May 2023
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural
  Real-Time SLAM
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM
Hengyi Wang
Jingwen Wang
Lourdes Agapito
204
197
0
27 Apr 2023
Photon Field Networks for Dynamic Real-Time Volumetric Global
  Illumination
Photon Field Networks for Dynamic Real-Time Volumetric Global Illumination
David Bauer
Qi Wu
Kwan-Liu Ma
90
2
0
14 Apr 2023
HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural
  Representations via Knowledge Distillation
HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural Representations via Knowledge Distillation
Qi Wu
David Bauer
Yuyang Chen
Kwan-Liu Ma
72
16
0
09 Apr 2023
Neural Diffeomorphic Non-uniform B-spline Flows
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
69
1
0
07 Apr 2023
Online Neural Path Guiding with Normalized Anisotropic Spherical
  Gaussians
Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians
Jiawei Huang
Akito Iizuka
Hajime Tanaka
Taku Komura
Y. Kitamura
3DGS
77
4
0
11 Mar 2023
Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann
  Boundary Conditions
Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions
Rohan Sawhney
Bailey Miller
Ioannis Gkioulekas
Keenan Crane
86
28
0
23 Feb 2023
Example-Based Sampling with Diffusion Models
Example-Based Sampling with Diffusion Models
Bastien Doignies
Nicolas Bonneel
D. Coeurjolly
Julie Digne
L. Paulin
J. Iehl
V. Ostromoukhov
DiffM
55
0
0
10 Feb 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
65
18
0
09 Feb 2023
High-precision regressors for particle physics
High-precision regressors for particle physics
F. Bishara
A. Paul
Jennifer Dy
PINNAI4CE
80
1
0
02 Feb 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
125
29
0
26 Jan 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
78
63
0
26 Jan 2023
Adaptive Dynamic Global Illumination
Adaptive Dynamic Global Illumination
S. Datta
Negar Goli
Jerry Zhang
15
1
0
12 Jan 2023
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Seongmin Hong
I. Park
S. Chun
110
7
0
08 Dec 2022
Fast Non-Rigid Radiance Fields from Monocularized Data
Fast Non-Rigid Radiance Fields from Monocularized Data
Moritz Kappel
Vladislav Golyanik
Susana Castillo
Christian Theobalt
M. Magnor
3DH
90
5
0
02 Dec 2022
Continuous diffusion for categorical data
Continuous diffusion for categorical data
Sander Dieleman
Laurent Sartran
Arman Roshannai
Nikolay Savinov
Yaroslav Ganin
...
Conor Durkan
Curtis Hawthorne
Rémi Leblond
Will Grathwohl
J. Adler
DiffM
121
106
0
28 Nov 2022
Decorrelating ReSTIR Samplers via MCMC Mutations
Decorrelating ReSTIR Samplers via MCMC Mutations
Rohan Sawhney
Daqi Lin
M. Kettunen
Benedikt Bitterli
R. Ramamoorthi
Chris Wyman
Matt Pharr
16
12
0
31 Oct 2022
Whitening Convergence Rate of Coupling-based Normalizing Flows
Whitening Convergence Rate of Coupling-based Normalizing Flows
Felix Dräxler
Christoph Schnörr
Ullrich Kothe
120
7
0
25 Oct 2022
BSDF Importance Baking: A Lightweight Neural Solution to Importance
  Sampling General Parametric BSDFs
BSDF Importance Baking: A Lightweight Neural Solution to Importance Sampling General Parametric BSDFs
Yaoyi Bai
Songyin Wu
Z. Zeng
Beibei Wang
Ling-Qi Yan
60
2
0
25 Oct 2022
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
  Inference
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
Maximilian Dax
Stephen R. Green
J. Gair
M. Purrer
J. Wildberger
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
BDL
102
58
0
11 Oct 2022
Conditional Independence Testing via Latent Representation Learning
Conditional Independence Testing via Latent Representation Learning
Bao Duong
T. Nguyen
BDLCML
95
7
0
04 Sep 2022
NeuralVDB: High-resolution Sparse Volume Representation using
  Hierarchical Neural Networks
NeuralVDB: High-resolution Sparse Volume Representation using Hierarchical Neural Networks
Doyub Kim
Minjae Lee
Ken Museth
63
29
0
08 Aug 2022
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
136
95
0
03 Aug 2022
VolTeMorph: Realtime, Controllable and Generalisable Animation of
  Volumetric Representations
VolTeMorph: Realtime, Controllable and Generalisable Animation of Volumetric Representations
Stephan J. Garbin
Marek Kowalski
V. Estellers
Stanislaw Szymanowicz
Shideh Rezaeifar
Jingjing Shen
Matthew W. Johnson
Julien P. C. Valentin
3DHAI4CE
76
42
0
01 Aug 2022
Interactive Volume Visualization via Multi-Resolution Hash Encoding
  based Neural Representation
Interactive Volume Visualization via Multi-Resolution Hash Encoding based Neural Representation
Qi Wu
David Bauer
Michael J. Doyle
Kwan-Liu Ma
3DH
122
20
0
23 Jul 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
100
26
0
17 Jul 2022
Bridging Mean-Field Games and Normalizing Flows with Trajectory
  Regularization
Bridging Mean-Field Games and Normalizing Flows with Trajectory Regularization
Han Huang
Jiajia Yu
Jie Chen
Rongjie Lai
AI4CE
68
18
0
30 Jun 2022
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Yu Cao
Eric Vanden-Eijnden
68
3
0
20 Jun 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
98
14
0
17 Jun 2022
Continuous and Distribution-free Probabilistic Wind Power Forecasting: A
  Conditional Normalizing Flow Approach
Continuous and Distribution-free Probabilistic Wind Power Forecasting: A Conditional Normalizing Flow Approach
Honglin Wen
Pierre Pinson
Jinghuan Ma
Jie Gu
Zhijiang Jin
47
25
0
06 Jun 2022
Metappearance: Meta-Learning for Visual Appearance Reproduction
Metappearance: Meta-Learning for Visual Appearance Reproduction
Michael Fischer
Tobias Ritschel
3DH
65
10
0
19 Apr 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
  Optimization adjoint with Moving Speed
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei Chen
Jian Xu
Delu Zeng
86
8
0
19 Mar 2022
Active Exploration for Neural Global Illumination of Variable Scenes
Active Exploration for Neural Global Illumination of Variable Scenes
Stavros Diolatzis
Julien Philip
G. Drettakis
3DVBDL
48
23
0
15 Mar 2022
Previous
1234
Next