ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.03856
  4. Cited By
Neural Importance Sampling
v1v2v3v4v5 (latest)

Neural Importance Sampling

11 August 2018
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
ArXiv (abs)PDFHTML

Papers citing "Neural Importance Sampling"

35 / 185 papers shown
Title
Longitudinal Variational Autoencoder
Longitudinal Variational Autoencoder
S. Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
DRLCMLBDL
84
37
0
17 Jun 2020
Learning Neural Light Transport
Learning Neural Light Transport
Paul Sanzenbacher
L. Mescheder
Andreas Geiger
29
7
0
05 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric
  Densities
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
140
279
0
03 Jun 2020
Neural Control Variates
Neural Control Variates
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
BDL
107
56
0
02 Jun 2020
Fully probabilistic quasar continua predictions near Lyman-α with
  conditional neural spline flows
Fully probabilistic quasar continua predictions near Lyman-α with conditional neural spline flows
D. Reiman
John Tamanas
J. Prochaska
Dominika Ďurovčíková
57
6
0
31 May 2020
Exhaustive Neural Importance Sampling applied to Monte Carlo event
  generation
Exhaustive Neural Importance Sampling applied to Monte Carlo event generation
Sebastian Pina-Otey
F. Sánchez
Thorsten Lux
Vicens Gaitán
39
10
0
26 May 2020
Survey: Machine Learning in Production Rendering
Survey: Machine Learning in Production Rendering
Shilin Zhu
3DVAI4CE
16
1
0
26 May 2020
Online path sampling control with progressive spatio-temporal filtering
Online path sampling control with progressive spatio-temporal filtering
J. Pantaleoni
42
14
0
15 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural
  networks: perspectives from the theory of controlled diffusions and measures
  on path space
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
88
112
0
11 May 2020
Efficient sampling generation from explicit densities via Normalizing
  Flows
Efficient sampling generation from explicit densities via Normalizing Flows
Sebastian Pina-Otey
Thorsten Lux
F. Sánchez
Vicens Gaitán
10
0
0
23 Mar 2020
VegasFlow: accelerating Monte Carlo simulation across multiple hardware
  platforms
VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms
Stefano Carrazza
J. Cruz-Martinez
65
26
0
28 Feb 2020
Woodbury Transformations for Deep Generative Flows
Woodbury Transformations for Deep Generative Flows
You Lu
Bert Huang
73
16
0
27 Feb 2020
VFlow: More Expressive Generative Flows with Variational Data
  Augmentation
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
81
63
0
22 Feb 2020
Likelihood-free inference of experimental Neutrino Oscillations using
  Neural Spline Flows
Likelihood-free inference of experimental Neutrino Oscillations using Neural Spline Flows
Sebastian Pina-Otey
F. Sánchez
Vicens Gaitán
Thorsten Lux
15
3
0
21 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
152
186
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
88
93
0
12 Feb 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen
Ole Winther
MQ
235
13
0
06 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
93
157
0
06 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
83
111
0
15 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
110
65
0
15 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
219
1,720
0
05 Dec 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
100
47
0
29 Oct 2019
Distilling Importance Sampling for Likelihood Free Inference
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
81
3
0
08 Oct 2019
Identifying through Flows for Recovering Latent Representations
Identifying through Flows for Recovering Latent Representations
Shen Li
Bryan Hooi
Gim Hee Lee
DRLOOD
92
14
0
27 Sep 2019
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPMMedIm
100
58
0
25 Aug 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
228
778
0
10 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
104
58
0
05 Jun 2019
Hierarchical Importance Weighted Autoencoders
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
61
15
0
13 May 2019
Autoregressive Energy Machines
Autoregressive Energy Machines
C. Nash
Conor Durkan
73
55
0
11 Apr 2019
A RAD approach to deep mixture models
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
93
46
0
18 Mar 2019
Flow++: Improving Flow-Based Generative Models with Variational
  Dequantization and Architecture Design
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
102
451
0
01 Feb 2019
Deep-learning the Latent Space of Light Transport
Deep-learning the Latent Space of Light Transport
Pedro Hermosilla
S. Maisch
Tobias Ritschel
Timo Ropinski
3DPC
50
23
0
12 Nov 2018
Learning to Importance Sample in Primary Sample Space
Learning to Importance Sample in Primary Sample Space
Q. Zheng
Matthias Zwicker
52
66
0
23 Aug 2018
Integral Equations and Machine Learning
Integral Equations and Machine Learning
A. Keller
Ken Dahm
63
12
0
17 Dec 2017
Previous
1234