Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.03856
Cited By
v1
v2
v3
v4
v5 (latest)
Neural Importance Sampling
11 August 2018
Thomas Müller
Brian McWilliams
Fabrice Rousselle
Markus Gross
Jan Novák
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Importance Sampling"
35 / 185 papers shown
Title
Longitudinal Variational Autoencoder
S. Ramchandran
Gleb Tikhonov
Kalle Kujanpää
Miika Koskinen
Harri Lähdesmäki
DRL
CML
BDL
84
37
0
17 Jun 2020
Learning Neural Light Transport
Paul Sanzenbacher
L. Mescheder
Andreas Geiger
29
7
0
05 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
140
279
0
03 Jun 2020
Neural Control Variates
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
BDL
107
56
0
02 Jun 2020
Fully probabilistic quasar continua predictions near Lyman-α with conditional neural spline flows
D. Reiman
John Tamanas
J. Prochaska
Dominika Ďurovčíková
57
6
0
31 May 2020
Exhaustive Neural Importance Sampling applied to Monte Carlo event generation
Sebastian Pina-Otey
F. Sánchez
Thorsten Lux
Vicens Gaitán
39
10
0
26 May 2020
Survey: Machine Learning in Production Rendering
Shilin Zhu
3DV
AI4CE
16
1
0
26 May 2020
Online path sampling control with progressive spatio-temporal filtering
J. Pantaleoni
42
14
0
15 May 2020
Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space
Nikolas Nusken
Lorenz Richter
AI4CE
88
112
0
11 May 2020
Efficient sampling generation from explicit densities via Normalizing Flows
Sebastian Pina-Otey
Thorsten Lux
F. Sánchez
Vicens Gaitán
10
0
0
23 Mar 2020
VegasFlow: accelerating Monte Carlo simulation across multiple hardware platforms
Stefano Carrazza
J. Cruz-Martinez
65
26
0
28 Feb 2020
Woodbury Transformations for Deep Generative Flows
You Lu
Bert Huang
73
16
0
27 Feb 2020
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
81
63
0
22 Feb 2020
Likelihood-free inference of experimental Neutrino Oscillations using Neural Spline Flows
Sebastian Pina-Otey
F. Sánchez
Vicens Gaitán
Thorsten Lux
15
3
0
21 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
152
186
0
16 Feb 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
88
93
0
12 Feb 2020
Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen
Ole Winther
MQ
235
13
0
06 Feb 2020
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
93
157
0
06 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
83
111
0
15 Jan 2020
Invertible Generative Modeling using Linear Rational Splines
H. M. Dolatabadi
S. Erfani
C. Leckie
110
65
0
15 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
219
1,720
0
05 Dec 2019
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
100
47
0
29 Oct 2019
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
81
3
0
08 Oct 2019
Identifying through Flows for Recovering Latent Representations
Shen Li
Bryan Hooi
Gim Hee Lee
DRL
OOD
92
14
0
27 Sep 2019
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPM
MedIm
100
58
0
25 Aug 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
228
778
0
10 Jun 2019
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
104
58
0
05 Jun 2019
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Gunesh Dhekane
Alexandre Lacoste
Aaron Courville
BDL
61
15
0
13 May 2019
Autoregressive Energy Machines
C. Nash
Conor Durkan
73
55
0
11 Apr 2019
A RAD approach to deep mixture models
Laurent Dinh
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Razvan Pascanu
93
46
0
18 Mar 2019
Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design
Jonathan Ho
Xi Chen
A. Srinivas
Yan Duan
Pieter Abbeel
DRL
102
451
0
01 Feb 2019
Deep-learning the Latent Space of Light Transport
Pedro Hermosilla
S. Maisch
Tobias Ritschel
Timo Ropinski
3DPC
50
23
0
12 Nov 2018
Learning to Importance Sample in Primary Sample Space
Q. Zheng
Matthias Zwicker
52
66
0
23 Aug 2018
Integral Equations and Machine Learning
A. Keller
Ken Dahm
63
12
0
17 Dec 2017
Previous
1
2
3
4