ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.04308
  4. Cited By
Explaining the Unique Nature of Individual Gait Patterns with Deep
  Learning

Explaining the Unique Nature of Individual Gait Patterns with Deep Learning

13 August 2018
Fabian Horst
Sebastian Lapuschkin
Wojciech Samek
K. Müller
W. Schöllhorn
    AI4CE
ArXivPDFHTML

Papers citing "Explaining the Unique Nature of Individual Gait Patterns with Deep Learning"

24 / 24 papers shown
Title
Machine Learning in Biomechanics: Key Applications and Limitations in Walking, Running, and Sports Movements
Carlo Dindorf
Fabian Horst
D. Slijepcevic
Bernhard Dumphart
Jonas Dully
Matthias Zeppelzauer
B. Horsak
Michael Fröhlich
60
1
0
05 Mar 2025
Pantomime: Towards the Anonymization of Motion Data using Foundation Motion Models
Pantomime: Towards the Anonymization of Motion Data using Foundation Motion Models
Simon Hanisch
Julian Todt
Thorsten Strufe
34
0
0
13 Jan 2025
Marker-free Human Gait Analysis using a Smart Edge Sensor System
Marker-free Human Gait Analysis using a Smart Edge Sensor System
Eva Katharina Bauer
S. Bultmann
Sven Behnke
39
0
0
14 Nov 2024
The Role of Explainable AI in Revolutionizing Human Health Monitoring: A Review
The Role of Explainable AI in Revolutionizing Human Health Monitoring: A Review
Abdullah Alharthi
Ahmed Alqurashi
Turki Alharbi
Mohammed Alammar
Nasser Aldosari
Houssem Bouchekara
Yusuf Shaaban
Mohammad Shoaib Shahriar
Abdulrahman Al Ayidh
42
0
0
11 Sep 2024
Value Prediction for Spatiotemporal Gait Data Using Deep Learning
Value Prediction for Spatiotemporal Gait Data Using Deep Learning
Ryan Cavanagh
Jelena Trajkovic
Wenlu Zhang
I-Hung Khoo
Vennila Krishnan
CVBM
25
0
0
29 Feb 2024
A Framework For Gait-Based User Demography Estimation Using Inertial
  Sensors
A Framework For Gait-Based User Demography Estimation Using Inertial Sensors
C. Swami
35
1
0
15 Feb 2024
Explaining Deep Learning Models for Age-related Gait Classification
  based on time series acceleration
Explaining Deep Learning Models for Age-related Gait Classification based on time series acceleration
Xiaoping Zheng
Bert Otten
M. Reneman
Claudine JC. Lamoth
13
4
0
20 Nov 2023
Explainable AI and Machine Learning Towards Human Gait Deterioration
  Analysis
Explainable AI and Machine Learning Towards Human Gait Deterioration Analysis
Abdullah Alharthi
21
0
0
12 Jun 2023
A False Sense of Privacy: Towards a Reliable Evaluation Methodology for
  the Anonymization of Biometric Data
A False Sense of Privacy: Towards a Reliable Evaluation Methodology for the Anonymization of Biometric Data
Simon Hanisch
Julian Todt
J. Patino
Nicholas W. D. Evans
Thorsten Strufe
CVBM
31
5
0
04 Apr 2023
Multi-Channel Time-Series Person and Soft-Biometric Identification
Multi-Channel Time-Series Person and Soft-Biometric Identification
Nilah Ravi Nair
Fernando Moya Rueda
Christopher Reining
Gernot A. Fink
26
3
0
04 Apr 2023
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time
  Series
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series
Christoffer Loeffler
Wei-Cheng Lai
Bjoern M. Eskofier
Dario Zanca
Lukas M. Schmidt
Christopher Mutschler
FAtt
AI4TS
35
5
0
14 Mar 2022
Understanding Person Identification through Gait
Understanding Person Identification through Gait
Simon Hanisch
Evelyn Muschter
Admantini Hatzipanayioti
Shu-Chen Li
Thorsten Strufe
CVBM
18
11
0
08 Mar 2022
Automated freezing of gait assessment with marker-based motion capture
  and multi-stage spatial-temporal graph convolutional neural networks
Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks
Benjamin Filtjens
Pieter Ginis
A. Nieuwboer
P. Slaets
Bart Vanrumste
12
19
0
29 Mar 2021
Interpretable Deep Learning for the Remote Characterisation of
  Ambulation in Multiple Sclerosis using Smartphones
Interpretable Deep Learning for the Remote Characterisation of Ambulation in Multiple Sclerosis using Smartphones
Andrew P. Creagh
F. Lipsmeier
M. Lindemann
M. D. Vos
24
17
0
16 Mar 2021
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
On the Explanation of Machine Learning Predictions in Clinical Gait
  Analysis
On the Explanation of Machine Learning Predictions in Clinical Gait Analysis
D. Slijepcevic
Fabian Horst
Sebastian Lapuschkin
Anna-Maria Raberger
Matthias Zeppelzauer
Wojciech Samek
C. Breiteneder
W. Schöllhorn
B. Horsak
36
50
0
16 Dec 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
22
148
0
22 Oct 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining and Interpreting LSTMs
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
21
79
0
25 Sep 2019
From Clustering to Cluster Explanations via Neural Networks
From Clustering to Cluster Explanations via Neural Networks
Jacob R. Kauffmann
Malte Esders
Lukas Ruff
G. Montavon
Wojciech Samek
K. Müller
24
68
0
18 Jun 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Convolutional Neural Networks for Sentence Classification
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
255
13,364
0
25 Aug 2014
1