ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1808.05563
  4. Cited By
Learning Invariances using the Marginal Likelihood

Learning Invariances using the Marginal Likelihood

16 August 2018
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
ArXivPDFHTML

Papers citing "Learning Invariances using the Marginal Likelihood"

18 / 18 papers shown
Title
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
61
4
0
18 Oct 2024
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
22
11
0
14 Feb 2023
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
25
2
0
17 Oct 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Regularising for invariance to data augmentation improves supervised
  learning
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
30
14
0
07 Mar 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
52
56
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
29
44
0
22 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layers
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
17
8
0
04 Feb 2022
Adversarially Robust Models may not Transfer Better: Sufficient
  Conditions for Domain Transferability from the View of Regularization
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Bo-wen Li
20
10
0
03 Feb 2022
Residual Pathway Priors for Soft Equivariance Constraints
Residual Pathway Priors for Soft Equivariance Constraints
Marc Finzi
Gregory W. Benton
A. Wilson
BDL
UQCV
24
50
0
02 Dec 2021
Disentangling the Roles of Curation, Data-Augmentation and the Prior in
  the Cold Posterior Effect
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
27
23
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Neural Network Approximations for Calabi-Yau Metrics
Neural Network Approximations for Calabi-Yau Metrics
Vishnu Jejjala
D. M. Peña
Challenger Mishra
24
51
0
31 Dec 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
34
23
0
27 Oct 2020
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
19
190
0
16 Mar 2018
1