Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.05587
Cited By
Deep Convolutional Networks as shallow Gaussian Processes
16 August 2018
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Convolutional Networks as shallow Gaussian Processes"
50 / 76 papers shown
Title
Conditional Temporal Neural Processes with Covariance Loss
Boseon Yoo
Jiwoo Lee
Janghoon Ju
Seijun Chung
Soyeon Kim
Jaesik Choi
70
15
0
01 Apr 2025
Deep Neural Nets as Hamiltonians
Mike Winer
Boris Hanin
223
0
0
31 Mar 2025
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
66
0
0
02 Oct 2024
Re-evaluating the Advancements of Heterophilic Graph Learning
Sitao Luan
Qincheng Lu
Chenqing Hua
Xinyu Wang
Jiaqi Zhu
Xiao-Wen Chang
70
2
0
09 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
234
0
0
26 Aug 2024
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi
Pakshal Bohra
Ayoub El Biari
Mehrsa Pourya
Michael Unser
63
1
0
16 May 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
103
19
0
04 Mar 2024
On the Neural Tangent Kernel of Equilibrium Models
Zhili Feng
J. Zico Kolter
23
6
0
21 Oct 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
43
12
0
12 Jul 2023
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Bo Li
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
24
0
0
27 May 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
31
16
0
13 Apr 2023
Non-asymptotic approximations of Gaussian neural networks via second-order Poincaré inequalities
Alberto Bordino
Stefano Favaro
S. Fortini
28
7
0
08 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
21
2
0
05 Apr 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
30
0
0
26 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
38
61
0
26 Jan 2023
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
58
2
0
04 Dec 2022
Globally Gated Deep Linear Networks
Qianyi Li
H. Sompolinsky
AI4CE
27
10
0
31 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
47
13
0
21 Oct 2022
Uncertainty-Aware Meta-Learning for Multimodal Task Distributions
Cesar Almecija
Apoorva Sharma
Navid Azizan
OOD
UQCV
26
3
0
04 Oct 2022
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
40
7
0
11 Aug 2022
AutoInit: Automatic Initialization via Jacobian Tuning
Tianyu He
Darshil Doshi
Andrey Gromov
27
4
0
27 Jun 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
31
0
0
27 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
30
54
0
17 Jun 2022
Large-width asymptotics for ReLU neural networks with
α
α
α
-Stable initializations
Stefano Favaro
S. Fortini
Stefano Peluchetti
28
2
0
16 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
32
4
0
15 May 2022
NeuralEF: Deconstructing Kernels by Deep Neural Networks
Zhijie Deng
Jiaxin Shi
Jun Zhu
32
18
0
30 Apr 2022
Convergence of neural networks to Gaussian mixture distribution
Yasuhiko Asao
Ryotaro Sakamoto
S. Takagi
BDL
37
2
0
26 Apr 2022
Ternary and Binary Quantization for Improved Classification
Weizhi Lu
Mingrui Chen
Kai Guo
Weiyu Li
MQ
20
0
0
31 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
45
10
0
28 Feb 2022
Multi-model Ensemble Analysis with Neural Network Gaussian Processes
Trevor Harris
Yangqiu Song
Ryan Sriver
27
5
0
08 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
39
3
0
30 Jan 2022
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
34
4
0
14 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Bayesian neural network unit priors and generalized Weibull-tail property
M. Vladimirova
Julyan Arbel
Stéphane Girard
BDL
54
9
0
06 Oct 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
57
442
0
19 Aug 2021
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
46
30
0
03 Aug 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
51
231
0
27 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
37
44
0
04 Jul 2021
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci
Gregor Bachmann
Kevin Roth
Sebastian Nowozin
Thomas Hofmann
BDL
UQCV
31
32
0
11 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
38
124
0
14 May 2021
Quantum field-theoretic machine learning
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
19
28
0
18 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
29
250
0
12 Feb 2021
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction
Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knoll
Thomas Pock
UQCV
BDL
23
49
0
12 Feb 2021
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
241
0
30 Oct 2020
Tensor Programs III: Neural Matrix Laws
Greg Yang
19
45
0
22 Sep 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
46
100
0
15 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
26
3
0
15 Jun 2020
1
2
Next