Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.05587
Cited By
Deep Convolutional Networks as shallow Gaussian Processes
16 August 2018
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Convolutional Networks as shallow Gaussian Processes"
26 / 76 papers shown
Title
Stable behaviour of infinitely wide deep neural networks
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
22
28
0
01 Mar 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDL
GNN
47
17
0
26 Feb 2020
On the infinite width limit of neural networks with a standard parameterization
Jascha Narain Sohl-Dickstein
Roman Novak
S. Schoenholz
Jaehoon Lee
32
47
0
21 Jan 2020
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
24
131
0
03 Nov 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
194
0
28 Oct 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
27
9
0
12 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
22
161
0
03 Oct 2019
Neural networks are a priori biased towards Boolean functions with low entropy
Chris Mingard
Joar Skalse
Guillermo Valle Pérez
David Martínez-Rubio
Vladimir Mikulik
A. Louis
FAtt
AI4CE
30
37
0
25 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
32
114
0
25 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
62
625
0
14 Aug 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
42
122
0
05 Jun 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
19
31
0
27 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
88
1,362
0
01 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
65
906
0
26 Apr 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
57
1,080
0
18 Feb 2019
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
28
245
0
12 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
307
0
11 Oct 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
18
226
0
22 May 2018
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
72
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
350
5,849
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
Previous
1
2