Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.07217
Cited By
Don't Use Large Mini-Batches, Use Local SGD
22 August 2018
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Don't Use Large Mini-Batches, Use Local SGD"
50 / 271 papers shown
Title
Stochastic Controlled Averaging for Federated Learning with Communication Compression
Xinmeng Huang
Ping Li
Xiaoyun Li
32
195
0
16 Aug 2023
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
19
16
0
30 Jul 2023
DIGEST: Fast and Communication Efficient Decentralized Learning with Local Updates
Peyman Gholami
H. Seferoglu
FedML
8
11
0
14 Jul 2023
Momentum Benefits Non-IID Federated Learning Simply and Provably
Ziheng Cheng
Xinmeng Huang
Pengfei Wu
Kun Yuan
FedML
27
16
0
28 Jun 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
J. Zhang
84
2
0
26 Jun 2023
DropCompute: simple and more robust distributed synchronous training via compute variance reduction
Niv Giladi
Shahar Gottlieb
Moran Shkolnik
A. Karnieli
Ron Banner
Elad Hoffer
Kfir Y. Levy
Daniel Soudry
25
2
0
18 Jun 2023
Batches Stabilize the Minimum Norm Risk in High Dimensional Overparameterized Linear Regression
Shahar Stein Ioushua
Inbar Hasidim
O. Shayevitz
M. Feder
14
0
0
14 Jun 2023
A
2
CiD
2
\textbf{A}^2\textbf{CiD}^2
A
2
CiD
2
: Accelerating Asynchronous Communication in Decentralized Deep Learning
Adel Nabli
Eugene Belilovsky
Edouard Oyallon
13
6
0
14 Jun 2023
On the Computation-Communication Trade-Off with A Flexible Gradient Tracking Approach
Yan Huang
Jinming Xu
25
2
0
12 Jun 2023
Understanding How Consistency Works in Federated Learning via Stage-wise Relaxed Initialization
Yan Sun
Li Shen
Dacheng Tao
FedML
20
14
0
09 Jun 2023
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
Shiqiang Wang
Mingyue Ji
FedML
30
0
0
06 Jun 2023
Stochastic Gradient Langevin Dynamics Based on Quantization with Increasing Resolution
Jinwuk Seok
Chang-Jae Cho
20
0
0
30 May 2023
FAVANO: Federated AVeraging with Asynchronous NOdes
Louis Leconte
Van Minh Nguyen
Eric Moulines
FedML
28
2
0
25 May 2023
Local SGD Accelerates Convergence by Exploiting Second Order Information of the Loss Function
Linxuan Pan
Shenghui Song
FedML
17
2
0
24 May 2023
Loss Spike in Training Neural Networks
Zhongwang Zhang
Z. Xu
28
4
0
20 May 2023
Faster Federated Learning with Decaying Number of Local SGD Steps
Jed Mills
Jia Hu
Geyong Min
FedML
30
7
0
16 May 2023
Hierarchical Weight Averaging for Deep Neural Networks
Xiaozhe Gu
Zixun Zhang
Yuncheng Jiang
Tao Luo
Ruimao Zhang
Shuguang Cui
Zhuguo Li
14
5
0
23 Apr 2023
WW-FL: Secure and Private Large-Scale Federated Learning
F. Marx
T. Schneider
Ajith Suresh
Tobias Wehrle
Christian Weinert
Hossein Yalame
FedML
17
2
0
20 Feb 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
EPISODE: Episodic Gradient Clipping with Periodic Resampled Corrections for Federated Learning with Heterogeneous Data
M. Crawshaw
Yajie Bao
Mingrui Liu
FedML
12
8
0
14 Feb 2023
Delay Sensitive Hierarchical Federated Learning with Stochastic Local Updates
Abdulmoneam Ali
A. Arafa
FedML
34
4
0
09 Feb 2023
Federated Learning with Regularized Client Participation
Grigory Malinovsky
Samuel Horváth
Konstantin Burlachenko
Peter Richtárik
FedML
20
13
0
07 Feb 2023
FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering
Yongxin Guo
Xiaoying Tang
Tao R. Lin
OOD
FedML
30
8
0
29 Jan 2023
SuperFedNAS: Cost-Efficient Federated Neural Architecture Search for On-Device Inference
Alind Khare
A. Agrawal
Aditya Annavajjala
Payman Behnam
Myungjin Lee
Hugo Latapie
Alexey Tumanov
FedML
11
2
0
26 Jan 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
14
25
0
24 Jan 2023
Decentralized Gradient Tracking with Local Steps
Yue Liu
Tao R. Lin
Anastasia Koloskova
Sebastian U. Stich
24
36
0
03 Jan 2023
Federated Learning with Flexible Control
Shiqiang Wang
Jake B. Perazzone
Mingyue Ji
Kevin S. Chan
FedML
28
17
0
16 Dec 2022
FedFA: Federated Learning with Feature Anchors to Align Features and Classifiers for Heterogeneous Data
Tailin Zhou
Jun Zhang
Danny H. K. Tsang
FedML
15
57
0
17 Nov 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
29
47
0
13 Oct 2022
On the Performance of Gradient Tracking with Local Updates
Edward Duc Hien Nguyen
Sulaiman A. Alghunaim
Kun Yuan
César A. Uribe
35
18
0
10 Oct 2022
Scaling up Stochastic Gradient Descent for Non-convex Optimisation
S. Mohamad
H. Alamri
A. Bouchachia
34
3
0
06 Oct 2022
STSyn: Speeding Up Local SGD with Straggler-Tolerant Synchronization
Feng Zhu
Jingjing Zhang
Xin Eric Wang
26
3
0
06 Oct 2022
Taming Fat-Tailed ("Heavier-Tailed'' with Potentially Infinite Variance) Noise in Federated Learning
Haibo Yang
Pei-Yuan Qiu
Jia Liu
FedML
27
12
0
03 Oct 2022
Distributed Non-Convex Optimization with One-Bit Compressors on Heterogeneous Data: Efficient and Resilient Algorithms
Ming Xiang
Lili Su
FedML
18
2
0
03 Oct 2022
SAGDA: Achieving
O
(
ε
−
2
)
\mathcal{O}(ε^{-2})
O
(
ε
−
2
)
Communication Complexity in Federated Min-Max Learning
Haibo Yang
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
FedML
23
0
0
02 Oct 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
72
9
0
12 Sep 2022
Flexible Vertical Federated Learning with Heterogeneous Parties
Timothy Castiglia
Shiqiang Wang
S. Patterson
FedML
22
33
0
26 Aug 2022
Exact Penalty Method for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
17
0
0
23 Aug 2022
NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized Federated Learning with Heterogeneous Data
Xin Zhang
Minghong Fang
Zhuqing Liu
Haibo Yang
Jia-Wei Liu
Zhengyuan Zhu
FedML
13
14
0
17 Aug 2022
ILASR: Privacy-Preserving Incremental Learning for Automatic Speech Recognition at Production Scale
Gopinath Chennupati
Milind Rao
Gurpreet Chadha
Aaron Eakin
A. Raju
...
Andrew Oberlin
Buddha Nandanoor
Prahalad Venkataramanan
Zheng Wu
Pankaj Sitpure
CLL
16
8
0
19 Jul 2022
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
48
3
0
11 Jul 2022
Compressed-VFL: Communication-Efficient Learning with Vertically Partitioned Data
Timothy Castiglia
Anirban Das
Shiqiang Wang
S. Patterson
FedML
14
48
0
16 Jun 2022
Anchor Sampling for Federated Learning with Partial Client Participation
Feijie Wu
Song Guo
Zhihao Qu
Shiqi He
Ziming Liu
Jing Gao
FedML
28
12
0
13 Jun 2022
A principled framework for the design and analysis of token algorithms
Hadrien Hendrikx
FedML
16
13
0
30 May 2022
FedBR: Improving Federated Learning on Heterogeneous Data via Local Learning Bias Reduction
Yongxin Guo
Xiaoying Tang
Tao R. Lin
FedML
49
27
0
26 May 2022
Test-Time Robust Personalization for Federated Learning
Liang Jiang
Tao R. Lin
FedML
OOD
TTA
77
43
0
22 May 2022
A Communication-Efficient Distributed Gradient Clipping Algorithm for Training Deep Neural Networks
Mingrui Liu
Zhenxun Zhuang
Yunwei Lei
Chunyang Liao
20
16
0
10 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
16
10
0
08 May 2022
Communication-Efficient Adaptive Federated Learning
Yujia Wang
Lu Lin
Jinghui Chen
FedML
19
69
0
05 May 2022
FedGiA: An Efficient Hybrid Algorithm for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
23
16
0
03 May 2022
Previous
1
2
3
4
5
6
Next