Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1808.07217
Cited By
v1
v2
v3
v4
v5
v6 (latest)
Don't Use Large Mini-Batches, Use Local SGD
22 August 2018
Tao Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Don't Use Large Mini-Batches, Use Local SGD"
30 / 280 papers shown
Title
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
Sebastian U. Stich
Sai Praneeth Karimireddy
FedML
138
16
0
11 Sep 2019
Addressing Algorithmic Bottlenecks in Elastic Machine Learning with Chicle
Michael Kaufmann
K. Kourtis
Celestine Mendler-Dünner
Adrian Schüpbach
Thomas Parnell
92
0
0
11 Sep 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
351
458
0
10 Sep 2019
Gradient Descent with Compressed Iterates
Ahmed Khaled
Peter Richtárik
164
26
0
10 Sep 2019
Hierarchical Federated Learning Across Heterogeneous Cellular Networks
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019
Mehdi Salehi Heydar Abad
Emre Ozfatura
Deniz Gunduz
Ozgur Ercetin
FedML
200
353
0
05 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
IEEE Signal Processing Magazine (IEEE SPM), 2019
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
1.5K
5,326
0
21 Aug 2019
Federated Learning over Wireless Fading Channels
IEEE Transactions on Wireless Communications (TWC), 2019
M. Amiri
Deniz Gunduz
264
571
0
23 Jul 2019
Decentralized Deep Learning with Arbitrary Communication Compression
International Conference on Learning Representations (ICLR), 2019
Anastasia Koloskova
Tao Lin
Sebastian U. Stich
Martin Jaggi
FedML
303
251
0
22 Jul 2019
Collaborative Machine Learning at the Wireless Edge with Blind Transmitters
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2019
M. Amiri
T. Duman
Deniz Gunduz
120
57
0
08 Jul 2019
On the Convergence of FedAvg on Non-IID Data
International Conference on Learning Representations (ICLR), 2019
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
602
2,695
0
04 Jul 2019
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
Neural Information Processing Systems (NeurIPS), 2019
Aymeric Dieuleveut
Francis R. Bach
Laurent Massoulie
153
33
0
27 May 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
178
26
0
24 May 2019
On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization
International Conference on Machine Learning (ICML), 2019
Hao Yu
Rong Jin
192
52
0
10 May 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
International Conference on Machine Learning (ICML), 2019
Hao Yu
Rong Jin
Sen Yang
FedML
243
406
0
09 May 2019
Communication trade-offs for synchronized distributed SGD with large step size
Kumar Kshitij Patel
Hadrien Hendrikx
FedML
162
27
0
25 Apr 2019
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks
Peng Li
Susie Xi Rao
Jennifer Blase
Yue Zhang
Xu Chu
Ce Zhang
143
42
0
20 Apr 2019
A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction
Fan Zhou
Guojing Cong
135
8
0
12 Mar 2019
Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air
Mohammad Mohammadi Amiri
Deniz Gunduz
328
58
0
03 Jan 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
897
6,599
0
14 Dec 2018
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Rio Yokota
Satoshi Matsuoka
ODL
323
96
0
29 Nov 2018
Measuring the Effects of Data Parallelism on Neural Network Training
Journal of machine learning research (JMLR), 2018
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
533
450
0
08 Nov 2018
Elastic CoCoA: Scaling In to Improve Convergence
Michael Kaufmann
Chia-Wen Cheng
K. Kourtis
93
3
0
06 Nov 2018
Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD
Jianyu Wang
Gauri Joshi
FedML
172
243
0
19 Oct 2018
Distributed Learning over Unreliable Networks
Chen Yu
Hanlin Tang
Cédric Renggli
S. Kassing
Ankit Singla
Dan Alistarh
Ce Zhang
Ji Liu
OOD
224
66
0
17 Oct 2018
Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Translation
Nikolay Bogoychev
Marcin Junczys-Dowmunt
Kenneth Heafield
Alham Fikri Aji
ODL
123
17
0
27 Aug 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
358
355
0
22 Aug 2018
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
AAAI Conference on Artificial Intelligence (AAAI), 2018
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
434
655
0
17 Jul 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
851
1,173
0
24 May 2018
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
319
288
0
17 Mar 2018
Federated Meta-Learning with Fast Convergence and Efficient Communication
Fei Chen
Mi Luo
Zhenhua Dong
Zhenguo Li
Xiuqiang He
FedML
237
434
0
22 Feb 2018
Previous
1
2
3
4
5
6