Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1808.07217
Cited By
Don't Use Large Mini-Batches, Use Local SGD
22 August 2018
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Don't Use Large Mini-Batches, Use Local SGD"
50 / 271 papers shown
Title
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
25
21
0
27 Apr 2022
Federated Learning via Inexact ADMM
Shenglong Zhou
Geoffrey Ye Li
FedML
19
58
0
22 Apr 2022
FedCos: A Scene-adaptive Federated Optimization Enhancement for Performance Improvement
Hao Zhang
Tingting Wu
Siyao Cheng
Jie Liu
FedML
30
11
0
07 Apr 2022
Sparse Federated Learning with Hierarchical Personalized Models
Xiaofeng Liu
Qing Wang
Yunfeng Shao
Yinchuan Li
FedML
36
11
0
25 Mar 2022
The Role of Local Steps in Local SGD
Tiancheng Qin
S. Rasoul Etesami
César A. Uribe
8
4
0
14 Mar 2022
Scaling the Wild: Decentralizing Hogwild!-style Shared-memory SGD
Bapi Chatterjee
Vyacheslav Kungurtsev
Dan Alistarh
FedML
14
2
0
13 Mar 2022
ProxSkip: Yes! Local Gradient Steps Provably Lead to Communication Acceleration! Finally!
Konstantin Mishchenko
Grigory Malinovsky
Sebastian U. Stich
Peter Richtárik
11
148
0
18 Feb 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
22
20
0
12 Feb 2022
Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee
Anit Kumar Sahu
Chaoyang He
Salman Avestimehr
FedML
17
16
0
11 Jan 2022
AET-SGD: Asynchronous Event-triggered Stochastic Gradient Descent
Nhuong V. Nguyen
Song Han
21
2
0
27 Dec 2021
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
14
30
0
25 Dec 2021
Communication-Efficient Distributed Learning via Sparse and Adaptive Stochastic Gradient
Xiaoge Deng
Dongsheng Li
Tao Sun
Xicheng Lu
FedML
11
0
0
08 Dec 2021
Collaborative Learning over Wireless Networks: An Introductory Overview
Emre Ozfatura
Deniz Gunduz
H. Vincent Poor
22
11
0
07 Dec 2021
Loss Landscape Dependent Self-Adjusting Learning Rates in Decentralized Stochastic Gradient Descent
Wei Zhang
Mingrui Liu
Yu Feng
Xiaodong Cui
Brian Kingsbury
Yuhai Tu
6
3
0
02 Dec 2021
HADFL: Heterogeneity-aware Decentralized Federated Learning Framework
Jing Cao
Zirui Lian
Weihong Liu
Zongwei Zhu
Cheng Ji
FedML
14
18
0
16 Nov 2021
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters
Xiangru Lian
Binhang Yuan
Xuefeng Zhu
Yulong Wang
Yongjun He
...
Lei Yuan
Hai-bo Yu
Sen Yang
Ce Zhang
Ji Liu
VLM
19
34
0
10 Nov 2021
Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective
Margalit Glasgow
Honglin Yuan
Tengyu Ma
FedML
25
42
0
05 Nov 2021
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
22
14
0
01 Nov 2021
Communication-Efficient ADMM-based Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
35
22
0
28 Oct 2021
FedGEMS: Federated Learning of Larger Server Models via Selective Knowledge Fusion
Sijie Cheng
Jingwen Wu
Yanghua Xiao
Yang Liu
Yang Liu
FedML
10
67
0
21 Oct 2021
Trade-offs of Local SGD at Scale: An Empirical Study
Jose Javier Gonzalez Ortiz
Jonathan Frankle
Michael G. Rabbat
Ari S. Morcos
Nicolas Ballas
FedML
20
19
0
15 Oct 2021
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj
Tushar Vaidya
Soujanya Poria
OT
FedML
57
7
0
06 Oct 2021
Accelerate Distributed Stochastic Descent for Nonconvex Optimization with Momentum
Guojing Cong
Tianyi Liu
16
0
0
01 Oct 2021
Communication Efficient Generalized Tensor Factorization for Decentralized Healthcare Networks
Jing Ma
Qiuchen Zhang
Jian Lou
Li Xiong
S. Bhavani
Joyce C. Ho
18
0
0
03 Sep 2021
Statistical Estimation and Inference via Local SGD in Federated Learning
Xiang Li
Jiadong Liang
Xiangyu Chang
Zhihua Zhang
FedML
22
4
0
03 Sep 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
30
14
0
16 Aug 2021
RingFed: Reducing Communication Costs in Federated Learning on Non-IID Data
Guang Yang
Ke Mu
Chunhe Song
Zhijia Yang
Tierui Gong
FedML
8
15
0
19 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
175
411
0
14 Jul 2021
Sparse Personalized Federated Learning
Xiaofeng Liu
Yinchuan Li
Qing Wang
Xu Zhang
Yunfeng Shao
Yanhui Geng
FedML
31
6
0
12 Jul 2021
BAGUA: Scaling up Distributed Learning with System Relaxations
Shaoduo Gan
Xiangru Lian
Rui Wang
Jianbin Chang
Chengjun Liu
...
Jiawei Jiang
Binhang Yuan
Sen Yang
Ji Liu
Ce Zhang
23
30
0
03 Jul 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
16
21
0
02 Jul 2021
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
21
98
0
29 Jun 2021
Implicit Gradient Alignment in Distributed and Federated Learning
Yatin Dandi
Luis Barba
Martin Jaggi
FedML
18
31
0
25 Jun 2021
Behavior Mimics Distribution: Combining Individual and Group Behaviors for Federated Learning
Hua Huang
Fanhua Shang
Yuanyuan Liu
Hongying Liu
FedML
16
14
0
23 Jun 2021
CD-SGD: Distributed Stochastic Gradient Descent with Compression and Delay Compensation
Enda Yu
Dezun Dong
Yemao Xu
Shuo Ouyang
Xiangke Liao
6
5
0
21 Jun 2021
STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning
Prashant Khanduri
Pranay Sharma
Haibo Yang
Min-Fong Hong
Jia Liu
K. Rajawat
P. Varshney
FedML
17
63
0
19 Jun 2021
Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Optimization
Luofeng Liao
Li Shen
Jia Duan
Mladen Kolar
Dacheng Tao
11
4
0
18 Jun 2021
Optimality and Stability in Federated Learning: A Game-theoretic Approach
Kate Donahue
Jon M. Kleinberg
FedML
11
45
0
17 Jun 2021
Towards Heterogeneous Clients with Elastic Federated Learning
Zichen Ma
Yu Lu
Zihan Lu
Wenye Li
Jinfeng Yi
Shuguang Cui
FedML
11
3
0
17 Jun 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
19
112
0
15 Jun 2021
CFedAvg: Achieving Efficient Communication and Fast Convergence in Non-IID Federated Learning
Haibo Yang
Jia Liu
Elizabeth S. Bentley
FedML
13
16
0
14 Jun 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
13
288
0
11 Jun 2021
Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
Bokun Wang
Zhuoning Yuan
Yiming Ying
Tianbao Yang
FedML
40
9
0
09 Jun 2021
Communication-efficient SGD: From Local SGD to One-Shot Averaging
Artin Spiridonoff
Alexander Olshevsky
I. Paschalidis
FedML
21
20
0
09 Jun 2021
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
17
50
0
04 Jun 2021
On Linear Stability of SGD and Input-Smoothness of Neural Networks
Chao Ma
Lexing Ying
MLT
9
44
0
27 May 2021
Fast Federated Learning by Balancing Communication Trade-Offs
M. Nori
Sangseok Yun
Il Kim
FedML
18
53
0
23 May 2021
Accelerating Gossip SGD with Periodic Global Averaging
Yiming Chen
Kun Yuan
Yingya Zhang
Pan Pan
Yinghui Xu
W. Yin
15
41
0
19 May 2021
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
121
0
17 May 2021
LocalNewton: Reducing Communication Bottleneck for Distributed Learning
Vipul Gupta
Avishek Ghosh
Michal Derezinski
Rajiv Khanna
K. Ramchandran
Michael W. Mahoney
30
12
0
16 May 2021
Previous
1
2
3
4
5
6
Next