ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.04993
  4. Cited By
Semiparametrical Gaussian Processes Learning of Forward Dynamical Models
  for Navigating in a Circular Maze

Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze

13 September 2018
Diego Romeres
Devesh K. Jha
Alberto Dalla Libera
W. Yerazunis
D. Nikovski
ArXivPDFHTML

Papers citing "Semiparametrical Gaussian Processes Learning of Forward Dynamical Models for Navigating in a Circular Maze"

17 / 17 papers shown
Title
Adaptive Nonlinear Model Predictive Control for a Real-World Labyrinth Game
Adaptive Nonlinear Model Predictive Control for a Real-World Labyrinth Game
Johannes Gaber
Thomas Bi
Raffaello DÁndrea
AI4CE
66
0
0
12 Jun 2024
Derivative-free online learning of inverse dynamics models
Derivative-free online learning of inverse dynamics models
D. Romeres
Mattia Zorzi
Raffaello Camoriano
Silvio Traversaro
A. Chiuso
29
33
0
13 Sep 2018
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic
  Tasks involving Complex Dynamics
Sim-to-Real Transfer Learning using Robustified Controllers in Robotic Tasks involving Complex Dynamics
J. Baar
Alan Sullivan
Radu Cordorel
Devesh K. Jha
Diego Romeres
D. Nikovski
59
57
0
13 Sep 2018
Augmenting Physical Simulators with Stochastic Neural Networks: Case
  Study of Planar Pushing and Bouncing
Augmenting Physical Simulators with Stochastic Neural Networks: Case Study of Planar Pushing and Bouncing
Anurag Ajay
Jiajun Wu
Nima Fazeli
Maria Bauzá
L. Kaelbling
J. Tenenbaum
Alberto Rodriguez
48
118
0
09 Aug 2018
Setting up a Reinforcement Learning Task with a Real-World Robot
Setting up a Reinforcement Learning Task with a Real-World Robot
A. R. Mahmood
D. Korenkevych
Brent Komer
James Bergstra
48
76
0
19 Mar 2018
Learning to Compose Skills
Learning to Compose Skills
Himanshu Sahni
Saurabh Kumar
Farhan Tejani
Charles Isbell
CoGe
39
38
0
30 Nov 2017
Learning Data-Efficient Rigid-Body Contact Models: Case Study of Planar
  Impact
Learning Data-Efficient Rigid-Body Contact Models: Case Study of Planar Impact
Nima Fazeli
Samuel Zapolsky
Evan Drumwright
Alberto Rodriguez
PINN
56
30
0
16 Oct 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
103
1,940
0
19 Sep 2017
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
106
217
0
20 Jun 2017
GP-ILQG: Data-driven Robust Optimal Control for Uncertain Nonlinear
  Dynamical Systems
GP-ILQG: Data-driven Robust Optimal Control for Uncertain Nonlinear Dynamical Systems
Gilwoo Lee
S. Srinivasa
M. T. Mason
22
27
0
15 May 2017
Modular Multitask Reinforcement Learning with Policy Sketches
Modular Multitask Reinforcement Learning with Policy Sketches
Jacob Andreas
Dan Klein
Sergey Levine
OffRL
92
460
0
06 Nov 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
50
1,076
0
16 Sep 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
177
5,056
0
05 Jun 2016
Online semi-parametric learning for inverse dynamics modeling
Online semi-parametric learning for inverse dynamics modeling
D. Romeres
Mattia Zorzi
Raffaello Camoriano
A. Chiuso
25
48
0
17 Mar 2016
On-line Bayesian System Identification
On-line Bayesian System Identification
D. Romeres
G. Prando
G. Pillonetto
A. Chiuso
22
15
0
17 Jan 2016
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
228
3,418
0
02 Apr 2015
Gaussian Processes for Data-Efficient Learning in Robotics and Control
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
88
688
0
10 Feb 2015
1