ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.08820
  4. Cited By
Orthogonally Decoupled Variational Gaussian Processes
v1v2v3 (latest)

Orthogonally Decoupled Variational Gaussian Processes

24 September 2018
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
ArXiv (abs)PDFHTML

Papers citing "Orthogonally Decoupled Variational Gaussian Processes"

15 / 15 papers shown
Title
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
62
0
0
02 Jul 2024
Collapsed Inference for Bayesian Deep Learning
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng
Guy Van den Broeck
FedMLBDLUQCV
126
9
0
16 Jun 2023
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Spectrum Gaussian Processes Based On Tunable Basis Functions
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
18
0
0
14 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDLAI4TS
71
3
0
09 Jun 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
107
61
0
08 Nov 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
35
13
0
19 Oct 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
81
165
0
21 Feb 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
22
0
21 Feb 2020
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
57
3
0
14 Sep 2019
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
90
144
0
17 Jul 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
109
106
0
03 Apr 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
1