Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.08820
Cited By
v1
v2
v3 (latest)
Orthogonally Decoupled Variational Gaussian Processes
24 September 2018
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Orthogonally Decoupled Variational Gaussian Processes"
15 / 15 papers shown
Title
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
62
0
0
02 Jul 2024
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng
Guy Van den Broeck
FedML
BDL
UQCV
126
9
0
16 Jun 2023
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
89
23
0
05 Nov 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
91
23
0
22 Oct 2021
Spectrum Gaussian Processes Based On Tunable Basis Functions
Wenqi Fang
Guanlin Wu
Jingjing Li
Ziyi Wang
Jiang Cao
Yang Ping
18
0
0
14 Jul 2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
BDL
51
18
0
08 Jul 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDL
AI4TS
71
3
0
09 Jun 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
107
61
0
08 Nov 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
35
13
0
19 Oct 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
81
165
0
21 Feb 2020
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
22
0
21 Feb 2020
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
57
3
0
14 Sep 2019
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
90
144
0
17 Jul 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
109
106
0
03 Apr 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
62
230
0
19 Mar 2019
1