Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.09573
Cited By
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
25 September 2018
Yuejie Chi
Yue M. Lu
Yuxin Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview"
49 / 49 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
24
2
0
12 May 2025
Matrix Completion with Graph Information: A Provable Nonconvex Optimization Approach
Yao Wang
Yiyang Yang
Kaidong Wang
Shanxing Gao
Xiuwu Liao
58
0
0
12 Feb 2025
On Speeding Up Language Model Evaluation
Jin Peng Zhou
Christian K. Belardi
Ruihan Wu
Travis Zhang
Carla P. Gomes
Wen Sun
Kilian Q. Weinberger
48
1
0
08 Jul 2024
Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition
Zhen Qin
Zhihui Zhu
57
4
0
10 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
27
12
0
06 Jun 2024
Discrete Aware Matrix Completion via Convexized
ℓ
0
\ell_0
ℓ
0
-Norm Approximation
Niclas Führling
Kengo Ando
Giuseppe Thadeu Freitas de Abreu
David González González
Osvaldo Gonsa
19
1
0
03 May 2024
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
21
2
0
20 Nov 2023
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
13
19
0
17 Oct 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
11
9
0
09 Oct 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
18
3
0
25 Jul 2023
A Theoretically Guaranteed Quaternion Weighted Schatten p-norm Minimization Method for Color Image Restoration
Qing-Hua Zhang
Liangsheng He
Yiliang Wang
Liang-Jian Deng
J. Liu
19
1
0
24 Jul 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
20
8
0
26 Jun 2023
Gradient descent in matrix factorization: Understanding large initialization
Hengchao Chen
Xin Chen
Mohamad Elmasri
Qiang Sun
AI4CE
16
1
0
30 May 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
Perturbation Analysis of Neural Collapse
Tom Tirer
Haoxiang Huang
Jonathan Niles-Weed
AAML
30
23
0
29 Oct 2022
Are All Losses Created Equal: A Neural Collapse Perspective
Jinxin Zhou
Chong You
Xiao Li
Kangning Liu
Sheng Liu
Qing Qu
Zhihui Zhu
25
57
0
04 Oct 2022
A Validation Approach to Over-parameterized Matrix and Image Recovery
Lijun Ding
Zhen Qin
Liwei Jiang
Jinxin Zhou
Zhihui Zhu
19
13
0
21 Sep 2022
Optimal tuning-free convex relaxation for noisy matrix completion
Yuepeng Yang
Cong Ma
21
8
0
12 Jul 2022
Quantum Neural Network Compression
Zhirui Hu
Peiyan Dong
Zhepeng Wang
Youzuo Lin
Yanzhi Wang
Weiwen Jiang
GNN
25
28
0
04 Jul 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
24
69
0
14 Jun 2022
Robust Matrix Completion with Heavy-tailed Noise
Bingyan Wang
Jianqing Fan
8
3
0
09 Jun 2022
Preconditioned Gradient Descent for Overparameterized Nonconvex Burer--Monteiro Factorization with Global Optimality Certification
G. Zhang
S. Fattahi
Richard Y. Zhang
40
23
0
07 Jun 2022
Minimax Optimal Clustering of Bipartite Graphs with a Generalized Power Method
Guillaume Braun
Hemant Tyagi
21
5
0
24 May 2022
Signal Recovery with Non-Expansive Generative Network Priors
Jorio Cocola
16
1
0
24 Apr 2022
Seeded graph matching for the correlated Gaussian Wigner model via the projected power method
E. Araya
Guillaume Braun
Hemant Tyagi
77
4
0
08 Apr 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
17
3
0
22 Mar 2022
Algorithmic Regularization in Model-free Overparametrized Asymmetric Matrix Factorization
Liwei Jiang
Yudong Chen
Lijun Ding
20
26
0
06 Mar 2022
Multiway Spherical Clustering via Degree-Corrected Tensor Block Models
Jiaxin Hu
Miaoyan Wang
10
4
0
19 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
17
1
0
25 Dec 2021
Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
Khaled B. Letaief
Yuanming Shi
Jianmin Lu
Jianhua Lu
26
414
0
24 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
14
31
0
02 Nov 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
23
9
0
03 Aug 2021
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
40
13
0
24 Jun 2021
Efficient Sparse Coding using Hierarchical Riemannian Pursuit
Ye Xue
Vincent K. N. Lau
Songfu Cai
23
3
0
21 Apr 2021
Sharp Global Guarantees for Nonconvex Low-rank Recovery in the Noisy Overparameterized Regime
Richard Y. Zhang
32
25
0
21 Apr 2021
Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings
Kan Xu
Xuanyi Zhao
Hamsa Bastani
Osbert Bastani
17
6
0
18 Apr 2021
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
11
1
0
07 Jan 2021
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
19
15
0
17 Nov 2020
Escaping Saddle Points in Ill-Conditioned Matrix Completion with a Scalable Second Order Method
C. Kümmerle
C. M. Verdun
11
6
0
07 Sep 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
16
93
0
15 Jun 2020
Depth Descent Synchronization in
S
O
(
D
)
\mathrm{SO}(D)
SO
(
D
)
Tyler Maunu
Gilad Lerman
MDE
27
2
0
13 Feb 2020
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
14
26
0
25 Nov 2019
High-dimensional principal component analysis with heterogeneous missingness
Ziwei Zhu
Tengyao Wang
R. Samworth
25
47
0
28 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
19
491
0
31 May 2019
A Survey on Nonconvex Regularization Based Sparse and Low-Rank Recovery in Signal Processing, Statistics, and Machine Learning
Fei Wen
L. Chu
Peilin Liu
Robert C. Qiu
21
153
0
16 Aug 2018
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
19
53
0
12 Aug 2018
A modern maximum-likelihood theory for high-dimensional logistic regression
Pragya Sur
Emmanuel J. Candes
16
285
0
19 Mar 2018
Learning Latent Features with Pairwise Penalties in Low-Rank Matrix Completion
Kaiyi Ji
Jian Tan
Jinfeng Xu
Yuejie Chi
18
3
0
16 Feb 2018
The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences
Yuxin Chen
Emmanuel Candes
32
92
0
19 Sep 2016
1