Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.10606
Cited By
Solving Statistical Mechanics Using Variational Autoregressive Networks
27 September 2018
Dian Wu
Lei Wang
Pan Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Solving Statistical Mechanics Using Variational Autoregressive Networks"
29 / 79 papers shown
Title
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
33
13
0
22 Nov 2021
Analysis of autocorrelation times in Neural Markov Chain Monte Carlo simulations
P. Białas
P. Korcyl
T. Stebel
17
9
0
19 Nov 2021
A Bayesian generative neural network framework for epidemic inference problems
I. Biazzo
Alfredo Braunstein
Luca DallÁsta
Fabio Mazza
24
16
0
05 Nov 2021
Local-Global MCMC kernels: the best of both worlds
S. Samsonov
E. Lagutin
Marylou Gabrié
Alain Durmus
A. Naumov
Eric Moulines
19
13
0
04 Nov 2021
Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods
Marylou Gabrié
Grant M. Rotskoff
Eric Vanden-Eijnden
19
18
0
16 Jul 2021
Overcoming barriers to scalability in variational quantum Monte Carlo
Tianchen Zhao
Saibal De
Brian Chen
J. Stokes
S. Veerapaneni
BDL
DRL
16
11
0
24 Jun 2021
Tensor networks for unsupervised machine learning
Jing Liu
Sujie Li
Jiang Zhang
Pan Zhang
SSL
25
25
0
24 Jun 2021
Ab-initio study of interacting fermions at finite temperature with neural canonical transformation
Hao Xie
Linfeng Zhang
Lei Wang
20
26
0
18 May 2021
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Dian Wu
R. Rossi
Giuseppe Carleo
32
29
0
12 May 2021
Scaling of neural-network quantum states for time evolution
Sheng-Hsuan Lin
F. Pollmann
21
25
0
21 Apr 2021
Variational Autoencoder Analysis of Ising Model Statistical Distributions and Phase Transitions
D. Yevick
DRL
14
7
0
13 Apr 2021
Variational Neural Annealing
Mohamed Hibat-Allah
E. Inack
R. Wiersema
R. Melko
Juan Carrasquilla
DRL
19
80
0
25 Jan 2021
Noise-Robust End-to-End Quantum Control using Deep Autoregressive Policy Networks
Jiahao Yao
Paul Köttering
Hans Gundlach
Lin Lin
Marin Bukov
26
14
0
12 Dec 2020
Reconstruction of Pairwise Interactions using Energy-Based Models
Christoph Feinauer
C. Lucibello
14
4
0
11 Dec 2020
Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
Jiahao Yao
Lin Lin
Marin Bukov
BDL
AI4CE
32
61
0
07 Oct 2020
Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
8
3
0
14 Jul 2020
Extending machine learning classification capabilities with histogram reweighting
Dimitrios Bachtis
Gert Aarts
B. Lucini
19
21
0
29 Apr 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yue Yang
Y. Gao
AI4CE
37
8
0
25 Apr 2020
Deep Deterministic Portfolio Optimization
Ayman Chaouki
Stephen J. Hardiman
Christian Schmidt
Emmanuel Sérié
J. D. Lataillade
12
18
0
13 Mar 2020
Watch and learn -- a generalized approach for transferrable learning in deep neural networks via physical principles
Kyle Sprague
Juan Carrasquilla
S. Whitelam
Isaac Tamblyn
FedML
AI4CE
OOD
19
5
0
03 Mar 2020
Towards Novel Insights in Lattice Field Theory with Explainable Machine Learning
Stefan Blücher
Lukas Kades
J. Pawlowski
Nils Strodthoff
Julian M. Urban
AI4CE
9
32
0
03 Mar 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
27
86
0
12 Feb 2020
Quantum-inspired annealers as Boltzmann generators for machine learning and statistical physics
Alexander Ulanov
E. Tiunov
A. Lvovsky
AI4CE
8
7
0
18 Dec 2019
Neural Canonical Transformation with Symplectic Flows
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
DRL
34
28
0
30 Sep 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
437
0
26 Sep 2019
Inverse Ising inference from high-temperature re-weighting of observations
Junghyo Jo
Danh-Tai Hoang
V. Periwal
11
0
0
10 Sep 2019
Compressing deep neural networks by matrix product operators
Ze-Feng Gao
Song Cheng
Rong-Qiang He
Z. Xie
Hui-Hai Zhao
Zhong-Yi Lu
Tao Xiang
23
39
0
11 Apr 2019
Deep autoregressive models for the efficient variational simulation of many-body quantum systems
Or Sharir
Yoav Levine
Noam Wies
Giuseppe Carleo
Amnon Shashua
24
187
0
11 Feb 2019
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
264
3,243
0
24 Nov 2016
Previous
1
2