Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.10606
Cited By
Solving Statistical Mechanics Using Variational Autoregressive Networks
27 September 2018
Dian Wu
Lei Wang
Pan Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Solving Statistical Mechanics Using Variational Autoregressive Networks"
50 / 79 papers shown
Title
A Generative Neural Annealer for Black-Box Combinatorial Optimization
Yuan-Hang Zhang
M. Di Ventra
29
0
0
14 May 2025
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Hierarchical autoregressive neural networks in three-dimensional statistical system
P. Białas
Vaibhav Chahar
P. Korcyl
T. Stebel
Mateusz Winiarski
Dawid Zapolski
75
0
0
11 Mar 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
Lattice Protein Folding with Variational Annealing
Shoummo Ahsan Khandoker
E. Inack
Mohamed Hibat-Allah
AI4CE
46
0
0
28 Feb 2025
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
78
0
0
17 Feb 2025
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
41
1
0
17 Jan 2025
Simulating the Hubbard Model with Equivariant Normalizing Flows
Dominic Schuh
Janik Kreit
Evan Berkowitz
L. Funcke
Thomas Luu
K. Nicoli
Marcel Rodekamp
47
3
0
13 Jan 2025
Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression
Co Tran
Quoc-Bao Tran
Hy Truong Son
Thang N Dinh
33
0
0
24 Dec 2024
Machine learning the Ising transition: A comparison between discriminative and generative approaches
Difei Zhang
Frank Schafer
Julian Arnold
70
0
0
28 Nov 2024
A theoretical perspective on mode collapse in variational inference
Roman Soletskyi
Marylou Gabrié
Bruno Loureiro
DRL
37
2
0
17 Oct 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
44
17
0
03 Jun 2024
A method for quantifying the generalization capabilities of generative models for solving Ising models
Qunlong Ma
Zhi Ma
Ming Gao
35
0
0
06 May 2024
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
36
1
0
29 Apr 2024
Message Passing Variational Autoregressive Network for Solving Intractable Ising Models
Qunlong Ma
Zhi Ma
Jinlong Xu
Hairui Zhang
Ming Gao
32
5
0
09 Apr 2024
CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver
Zhenyu Pan
Ammar Gilani
En-Jui Kuo
Zhuo Liu
LRM
45
4
0
05 Mar 2024
Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy
Ana Molina-Taborda
Pilar Cossio
O. Lopez-Acevedo
Marylou Gabrié
30
4
0
29 Jan 2024
Variational Annealing on Graphs for Combinatorial Optimization
Sebastian Sanokowski
Wilhelm Berghammer
Sepp Hochreiter
Sebastian Lehner
56
13
0
23 Nov 2023
Generative Marginalization Models
Sulin Liu
Peter J. Ramadge
Ryan P. Adams
39
1
0
19 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
41
0
04 Oct 2023
Controlling Continuous Relaxation for Combinatorial Optimization
Yuma Ichikawa
32
4
0
29 Sep 2023
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
30
26
0
27 Aug 2023
Training normalizing flows with computationally intensive target probability distributions
P. Białas
P. Korcyl
T. Stebel
18
5
0
25 Aug 2023
Language models as master equation solvers
Chuanbo Liu
Jin Wang
41
0
0
29 Jul 2023
qecGPT: decoding Quantum Error-correcting Codes with Generative Pre-trained Transformers
Han-Yu Cao
Feng Pan
Yijia Wang
Pan Zhang
AI4CE
25
7
0
18 Jul 2023
Empirical Sample Complexity of Neural Network Mixed State Reconstruction
Haimeng Zhao
Giuseppe Carleo
F. Vicentini
36
11
0
04 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
Compressing neural network by tensor network with exponentially fewer variational parameters
Yong Qing
Ke Li
P. Zhou
Shi-Ju Ran
22
6
0
10 May 2023
Mutual information of spin systems from autoregressive neural networks
P. Białas
P. Korcyl
T. Stebel
32
3
0
26 Apr 2023
Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations
R. DineshP.
AI4CE
22
0
0
04 Apr 2023
The autoregressive neural network architecture of the Boltzmann distribution of pairwise interacting spins systems
I. Biazzo
AI4CE
34
7
0
16 Feb 2023
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
33
10
0
01 Jan 2023
Simulating first-order phase transition with hierarchical autoregressive networks
P. Białas
Paul A. Czarnota
P. Korcyl
T. Stebel
9
3
0
09 Dec 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
Inference in conditioned dynamics through causality restoration
Alfredo Braunstein
Giovanni Catania
Luca DallÁsta
M. Mariani
Anna Paola Muntoni
11
4
0
18 Oct 2022
Neural-network solutions to stochastic reaction networks
Ying Tang
Jiayu Weng
Pan Zhang
BDL
38
22
0
29 Sep 2022
Approximate sampling and estimation of partition functions using neural networks
George T. Cantwell
BDL
DRL
24
1
0
21 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
47
9
0
13 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Supplementing Recurrent Neural Networks with Annealing to Solve Combinatorial Optimization Problems
Shoummo Ahsan Khandoker
Jawaril Munshad Abedin
Mohamed Hibat-Allah
18
8
0
17 Jul 2022
An Empirical Study of Quantum Dynamics as a Ground State Problem with Neural Quantum States
Vladimir Vargas-Calderón
Herbert Vinck-Posada
Fabio A. González
28
0
0
18 Jun 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Hierarchical autoregressive neural networks for statistical systems
P. Białas
P. Korcyl
T. Stebel
21
11
0
21 Mar 2022
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
32
19
0
10 Feb 2022
Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths
Yanming Che
C. Gneiting
Franco Nori
37
6
0
06 Feb 2022
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
24
3
0
02 Feb 2022
m
∗
m^\ast
m
∗
of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
36
8
0
10 Jan 2022
Reversible Upper Confidence Bound Algorithm to Generate Diverse Optimized Candidates
Bin Chong
Yingguang Yang
Zi-Le Wang
Hang Xing
Zhirong Liu
16
4
0
30 Dec 2021
NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
F. Vicentini
Damian Hofmann
A. Szabó
Dian Wu
Christopher Roth
...
Gabriel Pescia
J. Nys
Vladimir Vargas-Calderón
N. Astrakhantsev
Giuseppe Carleo
19
87
0
20 Dec 2021
1
2
Next