ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.10606
  4. Cited By
Solving Statistical Mechanics Using Variational Autoregressive Networks

Solving Statistical Mechanics Using Variational Autoregressive Networks

27 September 2018
Dian Wu
Lei Wang
Pan Zhang
ArXivPDFHTML

Papers citing "Solving Statistical Mechanics Using Variational Autoregressive Networks"

50 / 79 papers shown
Title
A Generative Neural Annealer for Black-Box Combinatorial Optimization
A Generative Neural Annealer for Black-Box Combinatorial Optimization
Yuan-Hang Zhang
M. Di Ventra
29
0
0
14 May 2025
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Hierarchical autoregressive neural networks in three-dimensional statistical system
P. Białas
Vaibhav Chahar
P. Korcyl
T. Stebel
Mateusz Winiarski
Dawid Zapolski
75
0
0
11 Mar 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
Lattice Protein Folding with Variational Annealing
Lattice Protein Folding with Variational Annealing
Shoummo Ahsan Khandoker
E. Inack
Mohamed Hibat-Allah
AI4CE
46
0
0
28 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
78
0
0
17 Feb 2025
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
41
1
0
17 Jan 2025
Simulating the Hubbard Model with Equivariant Normalizing Flows
Simulating the Hubbard Model with Equivariant Normalizing Flows
Dominic Schuh
Janik Kreit
Evan Berkowitz
L. Funcke
Thomas Luu
K. Nicoli
Marcel Rodekamp
47
3
0
13 Jan 2025
Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression
Scalable Quantum-Inspired Optimization through Dynamic Qubit Compression
Co Tran
Quoc-Bao Tran
Hy Truong Son
Thang N Dinh
33
0
0
24 Dec 2024
Machine learning the Ising transition: A comparison between
  discriminative and generative approaches
Machine learning the Ising transition: A comparison between discriminative and generative approaches
Difei Zhang
Frank Schafer
Julian Arnold
70
0
0
28 Nov 2024
A theoretical perspective on mode collapse in variational inference
A theoretical perspective on mode collapse in variational inference
Roman Soletskyi
Marylou Gabrié
Bruno Loureiro
DRL
37
2
0
17 Oct 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial
  Optimization
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
44
17
0
03 Jun 2024
A method for quantifying the generalization capabilities of generative
  models for solving Ising models
A method for quantifying the generalization capabilities of generative models for solving Ising models
Qunlong Ma
Zhi Ma
Ming Gao
35
0
0
06 May 2024
Deep generative modelling of canonical ensemble with differentiable
  thermal properties
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
36
1
0
29 Apr 2024
Message Passing Variational Autoregressive Network for Solving
  Intractable Ising Models
Message Passing Variational Autoregressive Network for Solving Intractable Ising Models
Qunlong Ma
Zhi Ma
Jinlong Xu
Hairui Zhang
Ming Gao
32
5
0
09 Apr 2024
CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver
CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver
Zhenyu Pan
Ammar Gilani
En-Jui Kuo
Zhuo Liu
LRM
45
4
0
05 Mar 2024
Active learning of Boltzmann samplers and potential energies with
  quantum mechanical accuracy
Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy
Ana Molina-Taborda
Pilar Cossio
O. Lopez-Acevedo
Marylou Gabrié
30
4
0
29 Jan 2024
Variational Annealing on Graphs for Combinatorial Optimization
Variational Annealing on Graphs for Combinatorial Optimization
Sebastian Sanokowski
Wilhelm Berghammer
Sepp Hochreiter
Sebastian Lehner
56
13
0
23 Nov 2023
Generative Marginalization Models
Generative Marginalization Models
Sulin Liu
Peter J. Ramadge
Ryan P. Adams
39
1
0
19 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
41
0
04 Oct 2023
Controlling Continuous Relaxation for Combinatorial Optimization
Controlling Continuous Relaxation for Combinatorial Optimization
Yuma Ichikawa
32
4
0
29 Sep 2023
Sampling with flows, diffusion and autoregressive neural networks: A
  spin-glass perspective
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
30
26
0
27 Aug 2023
Training normalizing flows with computationally intensive target
  probability distributions
Training normalizing flows with computationally intensive target probability distributions
P. Białas
P. Korcyl
T. Stebel
18
5
0
25 Aug 2023
Language models as master equation solvers
Language models as master equation solvers
Chuanbo Liu
Jin Wang
41
0
0
29 Jul 2023
qecGPT: decoding Quantum Error-correcting Codes with Generative
  Pre-trained Transformers
qecGPT: decoding Quantum Error-correcting Codes with Generative Pre-trained Transformers
Han-Yu Cao
Feng Pan
Yijia Wang
Pan Zhang
AI4CE
25
7
0
18 Jul 2023
Empirical Sample Complexity of Neural Network Mixed State Reconstruction
Empirical Sample Complexity of Neural Network Mixed State Reconstruction
Haimeng Zhao
Giuseppe Carleo
F. Vicentini
36
11
0
04 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
Compressing neural network by tensor network with exponentially fewer
  variational parameters
Compressing neural network by tensor network with exponentially fewer variational parameters
Yong Qing
Ke Li
P. Zhou
Shi-Ju Ran
22
6
0
10 May 2023
Mutual information of spin systems from autoregressive neural networks
Mutual information of spin systems from autoregressive neural networks
P. Białas
P. Korcyl
T. Stebel
32
3
0
26 Apr 2023
Locality-constrained autoregressive cum conditional normalizing flow for
  lattice field theory simulations
Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations
R. DineshP.
AI4CE
22
0
0
04 Apr 2023
The autoregressive neural network architecture of the Boltzmann
  distribution of pairwise interacting spins systems
The autoregressive neural network architecture of the Boltzmann distribution of pairwise interacting spins systems
I. Biazzo
AI4CE
34
7
0
16 Feb 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
33
10
0
01 Jan 2023
Simulating first-order phase transition with hierarchical autoregressive
  networks
Simulating first-order phase transition with hierarchical autoregressive networks
P. Białas
Paul A. Czarnota
P. Korcyl
T. Stebel
9
3
0
09 Dec 2022
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Precision Machine Learning
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
Inference in conditioned dynamics through causality restoration
Inference in conditioned dynamics through causality restoration
Alfredo Braunstein
Giovanni Catania
Luca DallÁsta
M. Mariani
Anna Paola Muntoni
11
4
0
18 Oct 2022
Neural-network solutions to stochastic reaction networks
Neural-network solutions to stochastic reaction networks
Ying Tang
Jiayu Weng
Pan Zhang
BDL
38
22
0
29 Sep 2022
Approximate sampling and estimation of partition functions using neural
  networks
Approximate sampling and estimation of partition functions using neural networks
George T. Cantwell
BDL
DRL
24
1
0
21 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
47
9
0
13 Sep 2022
Gradients should stay on Path: Better Estimators of the Reverse- and
  Forward KL Divergence for Normalizing Flows
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Supplementing Recurrent Neural Networks with Annealing to Solve
  Combinatorial Optimization Problems
Supplementing Recurrent Neural Networks with Annealing to Solve Combinatorial Optimization Problems
Shoummo Ahsan Khandoker
Jawaril Munshad Abedin
Mohamed Hibat-Allah
18
8
0
17 Jul 2022
An Empirical Study of Quantum Dynamics as a Ground State Problem with
  Neural Quantum States
An Empirical Study of Quantum Dynamics as a Ground State Problem with Neural Quantum States
Vladimir Vargas-Calderón
Herbert Vinck-Posada
Fabio A. González
28
0
0
18 Jun 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Hierarchical autoregressive neural networks for statistical systems
Hierarchical autoregressive neural networks for statistical systems
P. Białas
P. Korcyl
T. Stebel
21
11
0
21 Mar 2022
Applications of Machine Learning to Lattice Quantum Field Theory
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
32
19
0
10 Feb 2022
Estimating the Euclidean quantum propagator with deep generative
  modeling of Feynman paths
Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths
Yanming Che
C. Gneiting
Franco Nori
37
6
0
06 Feb 2022
Gradient estimators for normalising flows
Gradient estimators for normalising flows
P. Białas
P. Korcyl
T. Stebel
BDL
24
3
0
02 Feb 2022
$m^\ast$ of two-dimensional electron gas: a neural canonical
  transformation study
m∗m^\astm∗ of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
36
8
0
10 Jan 2022
Reversible Upper Confidence Bound Algorithm to Generate Diverse
  Optimized Candidates
Reversible Upper Confidence Bound Algorithm to Generate Diverse Optimized Candidates
Bin Chong
Yingguang Yang
Zi-Le Wang
Hang Xing
Zhirong Liu
16
4
0
30 Dec 2021
NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
F. Vicentini
Damian Hofmann
A. Szabó
Dian Wu
Christopher Roth
...
Gabriel Pescia
J. Nys
Vladimir Vargas-Calderón
N. Astrakhantsev
Giuseppe Carleo
19
87
0
20 Dec 2021
12
Next