ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01075
  4. Cited By
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning

Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning

2 October 2018
Charles H. Martin
Michael W. Mahoney
    AI4CE
ArXivPDFHTML

Papers citing "Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning"

50 / 126 papers shown
Title
Bielik 11B v2 Technical Report
Bielik 11B v2 Technical Report
Krzysztof Ociepa
Łukasz Flis
Krzysztof Wróbel
Adrian Gwoździej
Remigiusz Kinas
29
0
0
05 May 2025
Free Random Projection for In-Context Reinforcement Learning
Free Random Projection for In-Context Reinforcement Learning
Tomohiro Hayase
B. Collins
Nakamasa Inoue
14
0
0
09 Apr 2025
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
75
0
0
30 Mar 2025
A Priori Generalizability Estimate for a CNN
A Priori Generalizability Estimate for a CNN
Cito Balsells
Beatrice Riviere
David T. Fuentes
35
0
0
24 Feb 2025
LoCA: Location-Aware Cosine Adaptation for Parameter-Efficient Fine-Tuning
LoCA: Location-Aware Cosine Adaptation for Parameter-Efficient Fine-Tuning
Zhekai Du
Yinjie Min
Jingjing Li
Ke Lu
Changliang Zou
Liuhua Peng
Tingjin Chu
M. Gong
153
1
0
05 Feb 2025
Using Pre-trained LLMs for Multivariate Time Series Forecasting
Using Pre-trained LLMs for Multivariate Time Series Forecasting
Malcolm Wolff
Shenghao Yang
Kari Torkkola
Michael W. Mahoney
AI4TS
AIFin
43
1
0
10 Jan 2025
ExpTest: Automating Learning Rate Searching and Tuning with Insights
  from Linearized Neural Networks
ExpTest: Automating Learning Rate Searching and Tuning with Insights from Linearized Neural Networks
Zan Chaudhry
Naoko Mizuno
74
0
0
25 Nov 2024
Evaluating Loss Landscapes from a Topology Perspective
Evaluating Loss Landscapes from a Topology Perspective
Tiankai Xie
Caleb Geniesse
Jiaqing Chen
Yaoqing Yang
Dmitriy Morozov
Michael W. Mahoney
Ross Maciejewski
Gunther H. Weber
23
1
0
14 Nov 2024
A Random Matrix Theory Perspective on the Spectrum of Learned Features
  and Asymptotic Generalization Capabilities
A Random Matrix Theory Perspective on the Spectrum of Learned Features and Asymptotic Generalization Capabilities
Yatin Dandi
Luca Pesce
Hugo Cui
Florent Krzakala
Yue M. Lu
Bruno Loureiro
MLT
37
1
0
24 Oct 2024
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
24
1
0
23 Oct 2024
How Does Data Diversity Shape the Weight Landscape of Neural Networks?
How Does Data Diversity Shape the Weight Landscape of Neural Networks?
Yang Ba
M. Mancenido
Rong Pan
19
0
0
18 Oct 2024
Model Balancing Helps Low-data Training and Fine-tuning
Model Balancing Helps Low-data Training and Fine-tuning
Zihang Liu
Y. Hu
Tianyu Pang
Yefan Zhou
Pu Ren
Yaoqing Yang
34
2
0
16 Oct 2024
AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved
  Layer-wise Pruning of Large Language Models
AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models
Haiquan Lu
Yefan Zhou
Shiwei Liu
Zhangyang Wang
Michael W. Mahoney
Yaoqing Yang
23
0
0
14 Oct 2024
AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality
AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality
Peijun Qing
Chongyang Gao
Yefan Zhou
Xingjian Diao
Yaoqing Yang
Soroush Vosoughi
MoMe
MoE
24
3
0
14 Oct 2024
Unveiling the Backbone-Optimizer Coupling Bias in Visual Representation
  Learning
Unveiling the Backbone-Optimizer Coupling Bias in Visual Representation Learning
Siyuan Li
Juanxi Tian
Zedong Wang
Luyuan Zhang
Zicheng Liu
Weiyang Jin
Yang Liu
Baigui Sun
Stan Z. Li
31
0
0
08 Oct 2024
Mitigating Memorization In Language Models
Mitigating Memorization In Language Models
Mansi Sakarvadia
Aswathy Ajith
Arham Khan
Nathaniel Hudson
Caleb Geniesse
Kyle Chard
Yaoqing Yang
Ian Foster
Michael W. Mahoney
KELM
MU
50
0
0
03 Oct 2024
Diff-INR: Generative Regularization for Electrical Impedance Tomography
Diff-INR: Generative Regularization for Electrical Impedance Tomography
Bowen Tong
Junwu Wang
Dong Liu
DiffM
MedIm
35
2
0
06 Sep 2024
Connectivity structure and dynamics of nonlinear recurrent neural
  networks
Connectivity structure and dynamics of nonlinear recurrent neural networks
David G. Clark
Owen Marschall
Alexander van Meegen
Ashok Litwin-Kumar
18
3
0
03 Sep 2024
Approaching Deep Learning through the Spectral Dynamics of Weights
Approaching Deep Learning through the Spectral Dynamics of Weights
David Yunis
Kumar Kshitij Patel
Samuel Wheeler
Pedro H. P. Savarese
Gal Vardi
Karen Livescu
Michael Maire
Matthew R. Walter
47
3
0
21 Aug 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
38
2
0
18 Jul 2024
Improving Hyperparameter Optimization with Checkpointed Model Weights
Improving Hyperparameter Optimization with Checkpointed Model Weights
Nikhil Mehta
Jonathan Lorraine
Steve Masson
Ramanathan Arunachalam
Zaid Pervaiz Bhat
James Lucas
Arun George Zachariah
41
4
0
26 Jun 2024
Federated Dynamical Low-Rank Training with Global Loss Convergence
  Guarantees
Federated Dynamical Low-Rank Training with Global Loss Convergence Guarantees
Steffen Schotthöfer
M. P. Laiu
FedML
32
4
0
25 Jun 2024
MD tree: a model-diagnostic tree grown on loss landscape
MD tree: a model-diagnostic tree grown on loss landscape
Yefan Zhou
Jianlong Chen
Qinxue Cao
Konstantin Schürholt
Yaoqing Yang
29
2
0
24 Jun 2024
Recent and Upcoming Developments in Randomized Numerical Linear Algebra
  for Machine Learning
Recent and Upcoming Developments in Randomized Numerical Linear Algebra for Machine Learning
Michał Dereziński
Michael W. Mahoney
20
5
0
17 Jun 2024
Towards Scalable and Versatile Weight Space Learning
Towards Scalable and Versatile Weight Space Learning
Konstantin Schurholt
Michael W. Mahoney
Damian Borth
40
15
0
14 Jun 2024
Learning Continually by Spectral Regularization
Learning Continually by Spectral Regularization
Alex Lewandowski
Saurabh Kumar
Dale Schuurmans
András Gyorgy
Marlos C. Machado
CLL
43
5
0
10 Jun 2024
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Crafting Heavy-Tails in Weight Matrix Spectrum without Gradient Noise
Vignesh Kothapalli
Tianyu Pang
Shenyang Deng
Zongmin Liu
Yaoqing Yang
32
3
0
07 Jun 2024
OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for
  Memory-Efficient LLM Fine-tuning
OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning
Pengxiang Li
Lu Yin
Xiaowei Gao
Shiwei Liu
26
7
0
28 May 2024
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Achieving Dimension-Free Communication in Federated Learning via Zeroth-Order Optimization
Zhe Li
Bicheng Ying
Zidong Liu
Haibo Yang
Haibo Yang
FedML
59
3
0
24 May 2024
The Impact of Geometric Complexity on Neural Collapse in Transfer
  Learning
The Impact of Geometric Complexity on Neural Collapse in Transfer Learning
Michael Munn
Benoit Dherin
Javier Gonzalvo
AAML
40
1
0
24 May 2024
Spectral Adapter: Fine-Tuning in Spectral Space
Spectral Adapter: Fine-Tuning in Spectral Space
Fangzhao Zhang
Mert Pilanci
37
8
0
22 May 2024
Transferable and Principled Efficiency for Open-Vocabulary Segmentation
Transferable and Principled Efficiency for Open-Vocabulary Segmentation
Jingxuan Xu
Wuyang Chen
Yao-Min Zhao
Yunchao Wei
VLM
31
2
0
11 Apr 2024
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
A Survey on Error-Bounded Lossy Compression for Scientific Datasets
Sheng Di
Jinyang Liu
Kai Zhao
Xin Liang
Robert Underwood
...
Jon C. Calhoun
Guanpeng Li
Kazutomo Yoshii
Khalid Ayed Alharthi
Franck Cappello
AI4CE
30
13
0
03 Apr 2024
Asymptotics of Learning with Deep Structured (Random) Features
Asymptotics of Learning with Deep Structured (Random) Features
Dominik Schröder
Daniil Dmitriev
Hugo Cui
Bruno Loureiro
48
6
0
21 Feb 2024
Neural Rank Collapse: Weight Decay and Small Within-Class Variability
  Yield Low-Rank Bias
Neural Rank Collapse: Weight Decay and Small Within-Class Variability Yield Low-Rank Bias
Emanuele Zangrando
Piero Deidda
Simone Brugiapaglia
Nicola Guglielmi
Francesco Tudisco
27
8
0
06 Feb 2024
Towards Explainable Artificial Intelligence (XAI): A Data Mining
  Perspective
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
Haoyi Xiong
Xuhong Li
Xiaofei Zhang
Jiamin Chen
Xinhao Sun
Yuchen Li
Zeyi Sun
Mengnan Du
XAI
35
8
0
09 Jan 2024
FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning
  Communications
FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications
Grant Wilkins
Sheng Di
Jon C. Calhoun
Zilinghan Li
Kibaek Kim
Robert Underwood
Richard Mortier
Franck Cappello
FedML
37
2
0
20 Dec 2023
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
  Training
Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training
Yefan Zhou
Tianyu Pang
Keqin Liu
Charles H. Martin
Michael W. Mahoney
Yaoqing Yang
34
7
0
01 Dec 2023
GloNets: Globally Connected Neural Networks
GloNets: Globally Connected Neural Networks
Antonio Di Cecco
C. Metta
M. Fantozzi
F. Morandin
Maurizio Parton
13
2
0
27 Nov 2023
An effective theory of collective deep learning
An effective theory of collective deep learning
Lluís Arola-Fernández
Lucas Lacasa
FedML
AI4CE
18
2
0
19 Oct 2023
LASER: Linear Compression in Wireless Distributed Optimization
LASER: Linear Compression in Wireless Distributed Optimization
Ashok Vardhan Makkuva
Marco Bondaschi
Thijs Vogels
Martin Jaggi
Hyeji Kim
Michael C. Gastpar
74
3
0
19 Oct 2023
Enhancing Accuracy in Deep Learning Using Random Matrix Theory
Enhancing Accuracy in Deep Learning Using Random Matrix Theory
Leonid Berlyand
Etienne Sandier
Yitzchak Shmalo
Lei Zhang
AAML
23
0
0
04 Oct 2023
Low Tensor Rank Learning of Neural Dynamics
Low Tensor Rank Learning of Neural Dynamics
Arthur Pellegrino
Alex Cayco-Gajic
Angus Chadwick
19
5
0
22 Aug 2023
Dense Sample Deep Learning
Dense Sample Deep Learning
Stephen Jose Hanson
Vivek Yadav
C. Hanson
10
2
0
20 Jul 2023
The Interpolating Information Criterion for Overparameterized Models
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
16
7
0
15 Jul 2023
Robust low-rank training via approximate orthonormal constraints
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
A Rainbow in Deep Network Black Boxes
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
17
10
0
29 May 2023
A Three-regime Model of Network Pruning
A Three-regime Model of Network Pruning
Yefan Zhou
Yaoqing Yang
Arin Chang
Michael W. Mahoney
24
10
0
28 May 2023
Neural Functional Transformers
Neural Functional Transformers
Allan Zhou
Kaien Yang
Yiding Jiang
Kaylee Burns
Winnie Xu
Samuel Sokota
J. Zico Kolter
Chelsea Finn
16
31
0
22 May 2023
Understanding the Generalization Ability of Deep Learning Algorithms: A
  Kernelized Renyi's Entropy Perspective
Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
Yuxin Dong
Tieliang Gong
H. Chen
Chen Li
15
4
0
02 May 2023
123
Next