Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01075
Cited By
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
2 October 2018
Charles H. Martin
Michael W. Mahoney
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning"
50 / 126 papers shown
Title
Heavy-Tailed Regularization of Weight Matrices in Deep Neural Networks
Xuanzhe Xiao
Zengyi Li
Chuanlong Xie
Fengwei Zhou
21
3
0
06 Apr 2023
Per-Example Gradient Regularization Improves Learning Signals from Noisy Data
Xuran Meng
Yuan Cao
Difan Zou
25
5
0
31 Mar 2023
Deep Learning Weight Pruning with RMT-SVD: Increasing Accuracy and Reducing Overfitting
Yitzchak Shmalo
Jonathan Jenkins
Oleksii Krupchytskyi
22
3
0
15 Mar 2023
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
20
47
0
27 Feb 2023
A rate of convergence when generating stable invariant Hermitian random matrix ensembles
M. Kieburg
Jiyuan Zhang
19
0
0
14 Feb 2023
Greedy Ordering of Layer Weight Matrices in Transformers Improves Translation
Elicia Ye
21
1
0
04 Feb 2023
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
40
14
0
11 Nov 2022
Feature Reconstruction Attacks and Countermeasures of DNN training in Vertical Federated Learning
Peng Ye
Zhifeng Jiang
Wei Wang
Bo-wen Li
Baochun Li
AAML
FedML
32
15
0
13 Oct 2022
Exploring Low Rank Training of Deep Neural Networks
Siddhartha Rao Kamalakara
Acyr F. Locatelli
Bharat Venkitesh
Jimmy Ba
Y. Gal
Aidan N. Gomez
48
22
0
27 Sep 2022
The SVD of Convolutional Weights: A CNN Interpretability Framework
Brenda Praggastis
Davis Brown
Carlos Ortiz Marrero
Emilie Purvine
Madelyn Shapiro
Bei Wang
FAtt
27
9
0
14 Aug 2022
An Empirical Study of Implicit Regularization in Deep Offline RL
Çağlar Gülçehre
Srivatsan Srinivasan
Jakub Sygnowski
Georg Ostrovski
Mehrdad Farajtabar
Matt Hoffman
Razvan Pascanu
Arnaud Doucet
OffRL
14
16
0
05 Jul 2022
Studying Generalization Through Data Averaging
C. Gomez-Uribe
FedML
19
0
0
28 Jun 2022
Deep Partial Least Squares for Empirical Asset Pricing
M. Dixon
Nicholas G. Polson
Kemen Goicoechea
21
2
0
20 Jun 2022
Only Tails Matter: Average-Case Universality and Robustness in the Convex Regime
Leonardo A Cunha
Gauthier Gidel
Fabian Pedregosa
Damien Scieur
Courtney Paquette
16
9
0
20 Jun 2022
Rank Diminishing in Deep Neural Networks
Ruili Feng
Kecheng Zheng
Yukun Huang
Deli Zhao
Michael I. Jordan
Zhengjun Zha
26
28
0
13 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
21
71
0
08 Jun 2022
Boundary between noise and information applied to filtering neural network weight matrices
Max Staats
M. Thamm
B. Rosenow
16
3
0
08 Jun 2022
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
Steffen Schotthöfer
Emanuele Zangrando
J. Kusch
Gianluca Ceruti
Francesco Tudisco
53
30
0
26 May 2022
An Empirical Study of the Occurrence of Heavy-Tails in Training a ReLU Gate
Sayar Karmakar
Anirbit Mukherjee
16
0
0
26 Apr 2022
Training-Free Robust Multimodal Learning via Sample-Wise Jacobian Regularization
Zhengqi Gao
Sucheng Ren
Zihui Xue
Siting Li
Hang Zhao
19
3
0
05 Apr 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
27
12
0
28 Mar 2022
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
36
32
0
10 Mar 2022
ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size Point Cloud Data
M. Biehler
Hao Yan
Jianjun Shi
3DPC
11
4
0
25 Feb 2022
Evaluating natural language processing models with generalization metrics that do not need access to any training or testing data
Yaoqing Yang
Ryan Theisen
Liam Hodgkinson
Joseph E. Gonzalez
Kannan Ramchandran
Charles H. Martin
Michael W. Mahoney
86
17
0
06 Feb 2022
A Generalized Weighted Optimization Method for Computational Learning and Inversion
Bjorn Engquist
Kui Ren
Yunan Yang
21
4
0
23 Jan 2022
Eigenvalue Distribution of Large Random Matrices Arising in Deep Neural Networks: Orthogonal Case
L. Pastur
19
5
0
12 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
27
49
0
31 Dec 2021
Learning from learning machines: a new generation of AI technology to meet the needs of science
L. Pion-Tonachini
K. Bouchard
Héctor García Martín
S. Peisert
W. B. Holtz
...
Rick L. Stevens
Mark Anderson
Ken Kreutz-Delgado
Michael W. Mahoney
James B. Brown
17
7
0
27 Nov 2021
Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
Xuran Meng
Jianfeng Yao
17
7
0
26 Nov 2021
Pretrained Language Models are Symbolic Mathematics Solvers too!
Kimia Noorbakhsh
Modar Sulaiman
M. Sharifi
Kallol Roy
Pooyan Jamshidi
LRM
20
18
0
07 Oct 2021
Random matrices in service of ML footprint: ternary random features with no performance loss
Hafiz Tiomoko Ali
Zhenyu Liao
Romain Couillet
36
7
0
05 Oct 2021
Shift-Curvature, SGD, and Generalization
Arwen V. Bradley
C. Gomez-Uribe
Manish Reddy Vuyyuru
27
2
0
21 Aug 2021
Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
Umut Simsekli
Rajiv Khanna
Michael W. Mahoney
15
20
0
02 Aug 2021
Taxonomizing local versus global structure in neural network loss landscapes
Yaoqing Yang
Liam Hodgkinson
Ryan Theisen
Joe Zou
Joseph E. Gonzalez
K. Ramchandran
Michael W. Mahoney
19
36
0
23 Jul 2021
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
13
100
0
17 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Z. Ringel
SSL
MLT
20
31
0
08 Jun 2021
Neural Monge Map estimation and its applications
JiaoJiao Fan
Shu Liu
Shaojun Ma
Haomin Zhou
Yongxin Chen
OT
22
23
0
07 Jun 2021
Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models
Courtney Paquette
Elliot Paquette
ODL
16
13
0
07 Jun 2021
Post-mortem on a deep learning contest: a Simpson's paradox and the complementary roles of scale metrics versus shape metrics
Charles H. Martin
Michael W. Mahoney
13
19
0
01 Jun 2021
Communication-Efficient Federated Learning with Dual-Side Low-Rank Compression
Zhefeng Qiao
Xianghao Yu
Jun Zhang
Khaled B. Letaief
FedML
33
19
0
26 Apr 2021
Pre-interpolation loss behaviour in neural networks
Arthur E. W. Venter
Marthinus W. Theunissen
Marelie Hattingh Davel
11
3
0
14 Mar 2021
Hessian Eigenspectra of More Realistic Nonlinear Models
Zhenyu Liao
Michael W. Mahoney
12
30
0
02 Mar 2021
Local Tail Statistics of Heavy-Tailed Random Matrix Ensembles with Unitary Invariance
M. Kieburg
A. Monteleone
22
2
0
01 Mar 2021
SGD in the Large: Average-case Analysis, Asymptotics, and Stepsize Criticality
Courtney Paquette
Kiwon Lee
Fabian Pedregosa
Elliot Paquette
9
32
0
08 Feb 2021
On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case
L. Pastur
V. Slavin
CML
22
12
0
20 Nov 2020
Sparse Quantized Spectral Clustering
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
MQ
14
15
0
03 Oct 2020
Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra
V. Papyan
6
77
0
27 Aug 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
18
93
0
15 Jun 2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
11
87
0
09 Jun 2020
Halting Time is Predictable for Large Models: A Universality Property and Average-case Analysis
Courtney Paquette
B. V. Merrienboer
Elliot Paquette
Fabian Pedregosa
24
25
0
08 Jun 2020
Previous
1
2
3
Next