ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01257
  4. Cited By
Near-Optimal Representation Learning for Hierarchical Reinforcement
  Learning

Near-Optimal Representation Learning for Hierarchical Reinforcement Learning

2 October 2018
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
ArXivPDFHTML

Papers citing "Near-Optimal Representation Learning for Hierarchical Reinforcement Learning"

48 / 48 papers shown
Title
Dynamic Legged Ball Manipulation on Rugged Terrains with Hierarchical Reinforcement Learning
Dynamic Legged Ball Manipulation on Rugged Terrains with Hierarchical Reinforcement Learning
Dongjie Zhu
Zhuo Yang
Tianhang Wu
Luzhou Ge
X. Li
Qi Liu
Zhaoxin Fan
29
0
0
21 Apr 2025
Behaviour Discovery and Attribution for Explainable Reinforcement Learning
Rishav Rishav
Somjit Nath
Vincent Michalski
Samira Ebrahimi Kahou
FAtt
OffRL
70
0
0
19 Mar 2025
CORD: Generalizable Cooperation via Role Diversity
CORD: Generalizable Cooperation via Role Diversity
Kanefumi Matsuyama
Kefan Su
Jiangxing Wang
Deheng Ye
Zongqing Lu
40
0
0
04 Jan 2025
Variational Inference Failures Under Model Symmetries: Permutation
  Invariant Posteriors for Bayesian Neural Networks
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
40
4
0
10 Aug 2024
Coordinating Planning and Tracking in Layered Control Policies via
  Actor-Critic Learning
Coordinating Planning and Tracking in Layered Control Policies via Actor-Critic Learning
Fengjun Yang
Nikolai Matni
OffRL
31
0
0
03 Aug 2024
Information-Theoretic State Variable Selection for Reinforcement
  Learning
Information-Theoretic State Variable Selection for Reinforcement Learning
Charles Westphal
Stephen Hailes
Mirco Musolesi
26
3
0
21 Jan 2024
Adaptive trajectory-constrained exploration strategy for deep
  reinforcement learning
Adaptive trajectory-constrained exploration strategy for deep reinforcement learning
Guojian Wang
Faguo Wu
Xiao Zhang
Ning Guo
Zhiming Zheng
33
3
0
27 Dec 2023
Universal Visual Decomposer: Long-Horizon Manipulation Made Easy
Universal Visual Decomposer: Long-Horizon Manipulation Made Easy
Zichen Zhang
Yunshuang Li
Osbert Bastani
Abhishek Gupta
Dinesh Jayaraman
Yecheng Jason Ma
Luca Weihs
37
17
0
12 Oct 2023
Hieros: Hierarchical Imagination on Structured State Space Sequence
  World Models
Hieros: Hierarchical Imagination on Structured State Space Sequence World Models
Paul Mattes
Rainer Schlosser
R. Herbrich
21
4
0
08 Oct 2023
Wasserstein Diversity-Enriched Regularizer for Hierarchical
  Reinforcement Learning
Wasserstein Diversity-Enriched Regularizer for Hierarchical Reinforcement Learning
Haorui Li
Jiaqi Liang
Linjing Li
D. Zeng
11
0
0
02 Aug 2023
Learning Achievement Structure for Structured Exploration in Domains
  with Sparse Reward
Learning Achievement Structure for Structured Exploration in Domains with Sparse Reward
Zihan Zhou
Animesh Garg
OffRL
22
3
0
30 Apr 2023
Discrete Factorial Representations as an Abstraction for Goal
  Conditioned Reinforcement Learning
Discrete Factorial Representations as an Abstraction for Goal Conditioned Reinforcement Learning
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin-hui Li
Romain Laroche
Yoshua Bengio
Rémi Tachet des Combes
OffRL
AI4CE
23
9
0
01 Nov 2022
Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
  Reinforcement Learning
Flexible Attention-Based Multi-Policy Fusion for Efficient Deep Reinforcement Learning
Zih-Yun Chiu
Yi-Lin Tuan
William Yang Wang
Michael C. Yip
OffRL
25
3
0
07 Oct 2022
An information-theoretic perspective on intrinsic motivation in
  reinforcement learning: a survey
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
34
35
0
19 Sep 2022
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Benjamin Eysenbach
Tianjun Zhang
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
28
139
0
15 Jun 2022
Discovering Intrinsic Reward with Contrastive Random Walk
Discovering Intrinsic Reward with Contrastive Random Walk
Zixuan Pan
Zihao Wei
Yidong Huang
Aditya Gupta
17
0
0
23 Apr 2022
Learning Design and Construction with Varying-Sized Materials via
  Prioritized Memory Resets
Learning Design and Construction with Varying-Sized Materials via Prioritized Memory Resets
Yunfei Li
Tao Kong
Lei Li
Yi Wu
43
4
0
12 Apr 2022
A Survey on Deep Reinforcement Learning-based Approaches for Adaptation
  and Generalization
A Survey on Deep Reinforcement Learning-based Approaches for Adaptation and Generalization
Pamul Yadav
Ashutosh Mishra
Junyong Lee
Shiho Kim
OffRL
AI4CE
18
10
0
17 Feb 2022
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill
  Acquisition
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition
Dylan Slack
Yinlam Chow
Bo Dai
Nevan Wichers
OffRL
24
7
0
10 Feb 2022
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement
  Learning
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
S. Chen
Jensen Gao
S. Reddy
Glen Berseth
Anca Dragan
Sergey Levine
OffRL
36
11
0
05 Feb 2022
TRAIL: Near-Optimal Imitation Learning with Suboptimal Data
TRAIL: Near-Optimal Imitation Learning with Suboptimal Data
Mengjiao Yang
Sergey Levine
Ofir Nachum
OffRL
41
42
0
27 Oct 2021
Learning Domain Invariant Representations in Goal-conditioned Block MDPs
Learning Domain Invariant Representations in Goal-conditioned Block MDPs
Beining Han
Chongyi Zheng
Harris Chan
Keiran Paster
Michael Ruogu Zhang
Jimmy Ba
OOD
AI4CE
20
13
0
27 Oct 2021
Hierarchical Skills for Efficient Exploration
Hierarchical Skills for Efficient Exploration
Jonas Gehring
Gabriel Synnaeve
Andreas Krause
Nicolas Usunier
28
40
0
20 Oct 2021
Provable Hierarchy-Based Meta-Reinforcement Learning
Provable Hierarchy-Based Meta-Reinforcement Learning
Kurtland Chua
Qi Lei
Jason D. Lee
22
5
0
18 Oct 2021
Context-Specific Representation Abstraction for Deep Option Learning
Context-Specific Representation Abstraction for Deep Option Learning
Marwa Abdulhai
Dong-Ki Kim
Matthew D Riemer
Miao Liu
Gerald Tesauro
Jonathan P. How
OffRL
31
9
0
20 Sep 2021
Multi-Task Learning with Sequence-Conditioned Transporter Networks
Multi-Task Learning with Sequence-Conditioned Transporter Networks
M. H. Lim
Andy Zeng
Brian Ichter
Maryam Bandari
Erwin Coumans
Claire Tomlin
S. Schaal
Aleksandra Faust
37
14
0
15 Sep 2021
Robust Predictable Control
Robust Predictable Control
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
OffRL
24
44
0
07 Sep 2021
Unsupervised Skill Discovery with Bottleneck Option Learning
Unsupervised Skill Discovery with Bottleneck Option Learning
Jaekyeom Kim
Seohong Park
Gunhee Kim
32
32
0
27 Jun 2021
Investigating the Role of Negatives in Contrastive Representation
  Learning
Investigating the Role of Negatives in Contrastive Representation Learning
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Dipendra Kumar Misra
SSL
29
49
0
18 Jun 2021
Which Mutual-Information Representation Learning Objectives are
  Sufficient for Control?
Which Mutual-Information Representation Learning Objectives are Sufficient for Control?
Kate Rakelly
Abhishek Gupta
Carlos Florensa
Sergey Levine
SSL
26
38
0
14 Jun 2021
Hierarchical Representation Learning for Markov Decision Processes
Hierarchical Representation Learning for Markov Decision Processes
Lorenzo Steccanella
Simone Totaro
Anders Jonsson
20
4
0
03 Jun 2021
From Motor Control to Team Play in Simulated Humanoid Football
From Motor Control to Team Play in Simulated Humanoid Football
Siqi Liu
Guy Lever
Zhe Wang
J. Merel
S. M. Ali Eslami
...
Tuomas Haarnoja
Brendan D. Tracey
K. Tuyls
T. Graepel
N. Heess
31
129
0
25 May 2021
Replacing Rewards with Examples: Example-Based Policy Search via
  Recursive Classification
Replacing Rewards with Examples: Example-Based Policy Search via Recursive Classification
Benjamin Eysenbach
Sergey Levine
Ruslan Salakhutdinov
OffRL
34
50
0
23 Mar 2021
From Pixels to Legs: Hierarchical Learning of Quadruped Locomotion
From Pixels to Legs: Hierarchical Learning of Quadruped Locomotion
Deepali Jain
Atil Iscen
Ken Caluwaerts
23
35
0
23 Nov 2020
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
  Learning
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning
Anurag Ajay
Aviral Kumar
Pulkit Agrawal
Sergey Levine
Ofir Nachum
OffRL
OnRL
34
153
0
26 Oct 2020
Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning
  with Intrinsic-Extrinsic Modeling
Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning with Intrinsic-Extrinsic Modeling
Xin Ye
Yezhou Yang
22
14
0
16 Oct 2020
RODE: Learning Roles to Decompose Multi-Agent Tasks
RODE: Learning Roles to Decompose Multi-Agent Tasks
Tonghan Wang
Tarun Gupta
Anuj Mahajan
Bei Peng
Shimon Whiteson
Chongjie Zhang
OffRL
30
203
0
04 Oct 2020
Data-efficient Hindsight Off-policy Option Learning
Data-efficient Hindsight Off-policy Option Learning
Markus Wulfmeier
Dushyant Rao
Roland Hafner
Thomas Lampe
A. Abdolmaleki
...
Michael Neunert
Dhruva Tirumala
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
23
47
0
30 Jul 2020
Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement
  Learning
Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning
Tianren Zhang
Shangqi Guo
Tian Tan
Xiaolin Hu
Feng Chen
22
80
0
20 Jun 2020
Hierarchically Decoupled Imitation for Morphological Transfer
Hierarchically Decoupled Imitation for Morphological Transfer
D. Hejna
Pieter Abbeel
Lerrel Pinto
LM&Ro
20
40
0
03 Mar 2020
Learning Functionally Decomposed Hierarchies for Continuous Control
  Tasks with Path Planning
Learning Functionally Decomposed Hierarchies for Continuous Control Tasks with Path Planning
Sammy Christen
Lukás Jendele
Emre Aksan
Otmar Hilliges
OffRL
22
25
0
14 Feb 2020
Predictive Coding for Boosting Deep Reinforcement Learning with Sparse
  Rewards
Predictive Coding for Boosting Deep Reinforcement Learning with Sparse Rewards
Xingyu Lu
Stas Tiomkin
Pieter Abbeel
OffRL
27
4
0
21 Dec 2019
Kinematic State Abstraction and Provably Efficient Rich-Observation
  Reinforcement Learning
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
21
151
0
13 Nov 2019
Learning Representations in Reinforcement Learning:An Information
  Bottleneck Approach
Learning Representations in Reinforcement Learning:An Information Bottleneck Approach
Yingjun Pei
Xinwen Hou
SSL
29
10
0
12 Nov 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
17
53
0
25 Aug 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
19
27
0
26 Jun 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
38
254
0
19 Jun 2019
Learning Compositional Neural Programs with Recursive Tree Search and
  Planning
Learning Compositional Neural Programs with Recursive Tree Search and Planning
Thomas Pierrot
Guillaume Ligner
Scott E. Reed
Olivier Sigaud
Nicolas Perrin
Alexandre Laterre
David Kas
Karim Beguir
Nando de Freitas
36
41
0
30 May 2019
1