Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1810.02281
Cited By
v1
v2
v3 (latest)
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
4 October 2018
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks"
50 / 209 papers shown
Title
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
International Conference on Machine Learning (ICML), 2020
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
240
197
0
07 Sep 2020
Holdout SGD: Byzantine Tolerant Federated Learning
Shahar Azulay
Lior Raz
Amir Globerson
Tomer Koren
Y. Afek
FedML
169
7
0
11 Aug 2020
Universality of Gradient Descent Neural Network Training
Neural Networks (NN), 2020
G. Welper
129
11
0
27 Jul 2020
On regularization of gradient descent, layer imbalance and flat minima
Boris Ginsburg
36
2
0
18 Jul 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
287
48
0
14 Jul 2020
Maximum-and-Concatenation Networks
International Conference on Machine Learning (ICML), 2020
Xingyu Xie
Hao Kong
Yue Yu
Wayne Zhang
Guangcan Liu
Zhouchen Lin
244
2
0
09 Jul 2020
Towards an Understanding of Residual Networks Using Neural Tangent Hierarchy (NTH)
CSIAM Transactions on Applied Mathematics (CSIAM Trans. Appl. Math.), 2020
Yuqing Li
Yaoyu Zhang
N. Yip
201
5
0
07 Jul 2020
Deep Polynomial Neural Networks
Grigorios G. Chrysos
Stylianos Moschoglou
Giorgos Bouritsas
Jiankang Deng
Yannis Panagakis
Stefanos Zafeiriou
143
110
0
20 Jun 2020
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
211
35
0
16 Jun 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
266
163
0
13 May 2020
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Journal of machine learning research (JMLR), 2020
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
428
1,107
0
19 Mar 2020
On Alignment in Deep Linear Neural Networks
Adityanarayanan Radhakrishnan
Eshaan Nichani
D. Bernstein
Caroline Uhler
129
2
0
13 Mar 2020
Batch Normalization Provably Avoids Rank Collapse for Randomly Initialised Deep Networks
Hadi Daneshmand
Jonas Köhler
Francis R. Bach
Thomas Hofmann
Aurelien Lucchi
OOD
ODL
145
4
0
03 Mar 2020
On the Global Convergence of Training Deep Linear ResNets
International Conference on Learning Representations (ICLR), 2020
Difan Zou
Philip M. Long
Quanquan Gu
170
41
0
02 Mar 2020
De-randomized PAC-Bayes Margin Bounds: Applications to Non-convex and Non-smooth Predictors
A. Banerjee
Tiancong Chen
Yingxue Zhou
BDL
213
9
0
23 Feb 2020
Revealing the Structure of Deep Neural Networks via Convex Duality
International Conference on Machine Learning (ICML), 2020
Tolga Ergen
Mert Pilanci
MLT
366
74
0
22 Feb 2020
The Break-Even Point on Optimization Trajectories of Deep Neural Networks
International Conference on Learning Representations (ICLR), 2020
Stanislaw Jastrzebski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Dong Wang
Krzysztof J. Geras
221
183
0
21 Feb 2020
Almost Sure Convergence of Dropout Algorithms for Neural Networks
Albert Senen-Cerda
J. Sanders
210
11
0
06 Feb 2020
A Deep Conditioning Treatment of Neural Networks
International Conference on Algorithmic Learning Theory (ALT), 2020
Naman Agarwal
Pranjal Awasthi
Satyen Kale
AI4CE
292
18
0
04 Feb 2020
Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear Networks
International Conference on Learning Representations (ICLR), 2020
Wei Hu
Lechao Xiao
Jeffrey Pennington
169
126
0
16 Jan 2020
Optimization for deep learning: theory and algorithms
Tian Ding
ODL
275
177
0
19 Dec 2019
Over-parametrized deep neural networks do not generalize well
Michael Kohler
A. Krzyżak
145
15
0
09 Dec 2019
Analysis of the rate of convergence of neural network regression estimates which are easy to implement
Alina Braun
Michael Kohler
A. Krzyżak
155
1
0
09 Dec 2019
On the rate of convergence of a neural network regression estimate learned by gradient descent
Alina Braun
Michael Kohler
Harro Walk
99
11
0
09 Dec 2019
Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers
Computer Vision and Pattern Recognition (CVPR), 2019
Shady Abu Hussein
Tom Tirer
Raja Giryes
SupR
159
74
0
30 Nov 2019
AR-Net: A simple Auto-Regressive Neural Network for time-series
Oskar Triebe
N. Laptev
Ram Rajagopal
AI4TS
AI4CE
212
67
0
27 Nov 2019
Global Convergence of Gradient Descent for Deep Linear Residual Networks
Neural Information Processing Systems (NeurIPS), 2019
Lei Wu
Qingcan Wang
Chao Ma
ODL
AI4CE
223
24
0
02 Nov 2019
Neural Similarity Learning
Neural Information Processing Systems (NeurIPS), 2019
Weiyang Liu
Zhen Liu
James M. Rehg
Le Song
157
32
0
28 Oct 2019
Effects of Depth, Width, and Initialization: A Convergence Analysis of Layer-wise Training for Deep Linear Neural Networks
Analysis and Applications (Anal. Appl.), 2019
Yeonjong Shin
259
13
0
14 Oct 2019
Learning deep linear neural networks: Riemannian gradient flows and convergence to global minimizers
Information and Inference A Journal of the IMA (JIII), 2019
B. Bah
Holger Rauhut
Ulrich Terstiege
Michael Westdickenberg
MLT
276
77
0
12 Oct 2019
Pure and Spurious Critical Points: a Geometric Study of Linear Networks
International Conference on Learning Representations (ICLR), 2019
Matthew Trager
Kathlén Kohn
Joan Bruna
148
36
0
03 Oct 2019
Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension
Yuandong Tian
MLT
180
8
0
30 Sep 2019
Overparameterized Neural Networks Implement Associative Memory
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
199
77
0
26 Sep 2019
Stochastic AUC Maximization with Deep Neural Networks
International Conference on Learning Representations (ICLR), 2019
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
343
113
0
28 Aug 2019
PolyGAN: High-Order Polynomial Generators
Grigorios G. Chrysos
Stylianos Moschoglou
Yannis Panagakis
Stefanos Zafeiriou
GAN
130
19
0
19 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
International Conference on Learning Representations (ICLR), 2019
A. Panigrahi
Abhishek Shetty
Navin Goyal
193
23
0
16 Aug 2019
Hessian based analysis of SGD for Deep Nets: Dynamics and Generalization
SDM (SDM), 2019
Xinyan Li
Qilong Gu
Yingxue Zhou
Tiancong Chen
A. Banerjee
ODL
180
54
0
24 Jul 2019
Towards Enhancing Fault Tolerance in Neural Networks
International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous), 2019
Vasisht Duddu
D. V. Rao
V. Balas
OOD
AAML
155
6
0
06 Jul 2019
Learning One-hidden-layer neural networks via Provable Gradient Descent with Random Initialization
Shuhao Xia
Yuanming Shi
ODL
MLT
82
0
0
04 Jul 2019
Decoupling Gating from Linearity
Jonathan Fiat
Eran Malach
Shai Shalev-Shwartz
184
31
0
12 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Neural Information Processing Systems (NeurIPS), 2019
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
352
556
0
31 May 2019
On the Expressive Power of Deep Polynomial Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Joe Kileel
Matthew Trager
Joan Bruna
152
91
0
29 May 2019
On Dropout and Nuclear Norm Regularization
International Conference on Machine Learning (ICML), 2019
Poorya Mianjy
R. Arora
203
24
0
28 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Guodong Zhang
James Martens
Roger C. Grosse
ODL
238
130
0
27 May 2019
The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent
Karthik A. Sankararaman
Soham De
Zheng Xu
Wenjie Huang
Tom Goldstein
ODL
236
114
0
15 Apr 2019
Connections Between Adaptive Control and Optimization in Machine Learning
Joseph E. Gaudio
T. Gibson
Anuradha M. Annaswamy
M. Bolender
E. Lavretsky
AI4CE
103
44
0
11 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
234
22
0
10 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
167
19
0
07 Apr 2019
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODL
MLT
AI4CE
535
166
0
04 Feb 2019
Depth creates no more spurious local minima
Li Zhang
189
19
0
28 Jan 2019
Previous
1
2
3
4
5
Next