ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04093
  4. Cited By
Geometry meets semantics for semi-supervised monocular depth estimation

Geometry meets semantics for semi-supervised monocular depth estimation

9 October 2018
Pierluigi Zama Ramirez
Matteo Poggi
Fabio Tosi
S. Mattoccia
Luigi Di Stefano
    MDE
ArXivPDFHTML

Papers citing "Geometry meets semantics for semi-supervised monocular depth estimation"

11 / 11 papers shown
Title
MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by
  Filtering with Self-Supervised Geometry and Motion
MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion
Angel Villar-Corrales
Moritz Austermann
Sven Behnke
VOS
34
0
0
30 May 2024
X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task
  Distillation
X-Distill: Improving Self-Supervised Monocular Depth via Cross-Task Distillation
H. Cai
J. Matai
Shubhankar Borse
Yizhe Zhang
Amin Ansari
Fatih Porikli
FedML
VLM
MDE
47
21
0
24 Oct 2021
Learning Depth via Leveraging Semantics: Self-supervised Monocular Depth
  Estimation with Both Implicit and Explicit Semantic Guidance
Learning Depth via Leveraging Semantics: Self-supervised Monocular Depth Estimation with Both Implicit and Explicit Semantic Guidance
Rui Li
Xiantuo He
Danna Xue
Shaolin Su
Qing Mao
Yu Zhu
Jinqiu Sun
Yanning Zhang
SSL
MDE
35
29
0
11 Feb 2021
Approaches, Challenges, and Applications for Deep Visual Odometry:
  Toward to Complicated and Emerging Areas
Approaches, Challenges, and Applications for Deep Visual Odometry: Toward to Complicated and Emerging Areas
Ke Min Wang
Sai Ma
Junlan Chen
Fan Ren
6
81
0
06 Sep 2020
$S^3$Net: Semantic-Aware Self-supervised Depth Estimation with Monocular
  Videos and Synthetic Data
S3S^3S3Net: Semantic-Aware Self-supervised Depth Estimation with Monocular Videos and Synthetic Data
Bin Cheng
Inderjot Singh Saggu
Raunak Shah
G. Bansal
Dinesh Bharadia
MDE
21
25
0
28 Jul 2020
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object
  Problem by Semantic Guidance
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance
Marvin Klingner
Jan-Aike Termöhlen
Jonas Mikolajczyk
Tim Fingscheidt
MDE
17
315
0
14 Jul 2020
Monocular Depth Prediction through Continuous 3D Loss
Monocular Depth Prediction through Continuous 3D Loss
Minghan Zhu
M. G. Jadidi
Yuanxin Zhong
Pingping Lu
Zhong Cao
Ryan Eustice
H. Peng
3DH
3DPC
3DV
MDE
11
4
0
21 Mar 2020
Real-Time Semantic Stereo Matching
Real-Time Semantic Stereo Matching
Pier Luigi Dovesi
Matteo Poggi
Lorenzo Andraghetti
Miquel Martí
Hedvig Kjellström
Alessandro Pieropan
S. Mattoccia
3DV
16
70
0
01 Oct 2019
Enhancing self-supervised monocular depth estimation with traditional
  visual odometry
Enhancing self-supervised monocular depth estimation with traditional visual odometry
Lorenzo Andraghetti
Panteleimon Myriokefalitakis
Pier Luigi Dovesi
Belén Luque
Matteo Poggi
Alessandro Pieropan
S. Mattoccia
MDE
20
41
0
08 Aug 2019
Learning Across Tasks and Domains
Learning Across Tasks and Domains
Pierluigi Zama Ramirez
A. Tonioni
Samuele Salti
Luigi Di Stefano
11
32
0
09 Apr 2019
Designing Deep Networks for Surface Normal Estimation
Designing Deep Networks for Surface Normal Estimation
X. Wang
David Fouhey
Abhinav Gupta
3DV
SSL
154
353
0
18 Nov 2014
1