Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.05752
Cited By
v1
v2
v3
v4 (latest)
Global Convergence of EM Algorithm for Mixtures of Two Component Linear Regression
12 October 2018
Jeongyeol Kwon
Wei Qian
Constantine Caramanis
Yudong Chen
Damek Davis
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Global Convergence of EM Algorithm for Mixtures of Two Component Linear Regression"
42 / 42 papers shown
Title
Learning Mixtures of Experts with EM: A Mirror Descent Perspective
Quentin Fruytier
Aryan Mokhtari
Sujay Sanghavi
MoE
86
0
0
09 Nov 2024
On the Convergence of a Federated Expectation-Maximization Algorithm
Zhixu Tao
Rajita Chandak
Sanjeev R. Kulkarni
FedML
90
0
0
11 Aug 2024
Toward Global Convergence of Gradient EM for Over-Parameterized Gaussian Mixture Models
Weihang Xu
Maryam Fazel
S. Du
89
2
0
29 Jun 2024
Online Learning and Information Exponents: On The Importance of Batch size, and Time/Complexity Tradeoffs
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
90
1
0
04 Jun 2024
Agnostic Learning of Mixed Linear Regressions with EM and AM Algorithms
A. Ghosh
Arya Mazumdar
FedML
59
0
0
03 Jun 2024
Global Convergence of Online Identification for Mixed Linear Regression
Yujing Liu
Zhixin Liu
Lei Guo
49
2
0
30 Nov 2023
A General Theory for Softmax Gating Multinomial Logistic Mixture of Experts
Huy Nguyen
Pedram Akbarian
TrungTin Nguyen
Nhat Ho
105
14
0
22 Oct 2023
Statistical Perspective of Top-K Sparse Softmax Gating Mixture of Experts
Huy Nguyen
Pedram Akbarian
Fanqi Yan
Nhat Ho
MoE
106
18
0
25 Sep 2023
EM for Mixture of Linear Regression with Clustered Data
Amirhossein Reisizadeh
Khashayar Gatmiry
Asuman Ozdaglar
FedML
45
1
0
22 Aug 2023
Towards Convergence Rates for Parameter Estimation in Gaussian-gated Mixture of Experts
Huy Nguyen
TrungTin Nguyen
Khai Nguyen
Nhat Ho
MoE
123
14
0
12 May 2023
Demystifying Softmax Gating Function in Gaussian Mixture of Experts
Huy Nguyen
TrungTin Nguyen
Nhat Ho
95
26
0
05 May 2023
Sharp analysis of EM for learning mixtures of pairwise differences
A. Dhawan
Cheng Mao
A. Pananjady
60
1
0
20 Feb 2023
Imbalanced Mixed Linear Regression
Pini Zilber
B. Nadler
56
5
0
29 Jan 2023
EM's Convergence in Gaussian Latent Tree Models
Y. Dagan
C. Daskalakis
Anthimos Vardis Kandiros
62
3
0
21 Nov 2022
Prediction Sets for High-Dimensional Mixture of Experts Models
Adel Javanmard
S. Shao
Jacob Bien
102
5
0
30 Oct 2022
On Learning Mixture of Linear Regressions in the Non-Realizable Setting
Avishek Ghosh
A. Mazumdar
S. Pal
Rajat Sen
54
10
0
26 May 2022
Beyond EM Algorithm on Over-specified Two-Component Location-Scale Gaussian Mixtures
Zhaolin Ren
Fuheng Cui
Sujay Sanghavi
Nhat Ho
85
3
0
23 May 2022
Support Recovery in Mixture Models with Sparse Parameters
A. Mazumdar
S. Pal
36
0
0
24 Feb 2022
Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models
Tudor Manole
Nhat Ho
52
22
0
17 Feb 2022
A Wasserstein Minimax Framework for Mixed Linear Regression
Theo Diamandis
Yonina C. Eldar
Alireza Fallah
Farzan Farnia
Asuman Ozdaglar
73
7
0
14 Jun 2021
Efficient Algorithms for Estimating the Parameters of Mixed Linear Regression Models
Babak Barazandeh
Ali Ghafelebashi
Meisam Razaviyayn
Ram Sriharsha
60
3
0
12 May 2021
High-Dimensional Differentially-Private EM Algorithm: Methods and Near-Optimal Statistical Guarantees
Zhe Zhang
Linjun Zhang
FedML
70
3
0
01 Apr 2021
The EM Algorithm is Adaptively-Optimal for Unbalanced Symmetric Gaussian Mixtures
Nir Weinberger
Guy Bresler
FedML
54
6
0
29 Mar 2021
Towards Optimal Problem Dependent Generalization Error Bounds in Statistical Learning Theory
Yunbei Xu
A. Zeevi
130
17
0
12 Nov 2020
Local Minima Structures in Gaussian Mixture Models
Yudong Chen
Dogyoon Song
Xumei Xi
Yuqian Zhang
38
3
0
28 Sep 2020
Learning Mixtures of Low-Rank Models
Yanxi Chen
Cong Ma
H. Vincent Poor
Yuxin Chen
57
13
0
23 Sep 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
87
45
0
14 Jul 2020
Recovery of Sparse Signals from a Mixture of Linear Samples
A. Mazumdar
S. Pal
FedML
61
12
0
29 Jun 2020
On the Minimax Optimality of the EM Algorithm for Learning Two-Component Mixed Linear Regression
Jeongyeol Kwon
Nhat Ho
Constantine Caramanis
54
39
0
04 Jun 2020
Structures of Spurious Local Minima in
k
k
k
-means
Wei Qian
Yuqian Zhang
Yudong Chen
50
14
0
16 Feb 2020
The EM Algorithm gives Sample-Optimality for Learning Mixtures of Well-Separated Gaussians
Jeongyeol Kwon
Constantine Caramanis
48
5
0
02 Feb 2020
Learning Mixtures of Linear Regressions in Subexponential Time via Fourier Moments
Sitan Chen
Jingkai Li
Zhao Song
80
39
0
16 Dec 2019
Sample Complexity of Learning Mixtures of Sparse Linear Regressions
A. Krishnamurthy
A. Mazumdar
A. Mcgregor
S. Pal
38
20
0
30 Oct 2019
Randomly initialized EM algorithm for two-component Gaussian mixture achieves near optimality in
O
(
n
)
O(\sqrt{n})
O
(
n
)
iterations
Yihong Wu
Harrison H. Zhou
270
43
0
28 Aug 2019
A Theoretical Case Study of Structured Variational Inference for Community Detection
Mingzhang Yin
Y. X. R. Wang
Purnamrita Sarkar
53
8
0
29 Jul 2019
Stochastic algorithms with geometric step decay converge linearly on sharp functions
Damek Davis
Dmitriy Drusvyatskiy
Vasileios Charisopoulos
73
28
0
22 Jul 2019
Max-Affine Regression: Provable, Tractable, and Near-Optimal Statistical Estimation
Avishek Ghosh
A. Pananjady
Adityanand Guntuboyina
Kannan Ramchandran
68
26
0
21 Jun 2019
Global Convergence of Least Squares EM for Demixing Two Log-Concave Densities
Wei Qian
Yuqian Zhang
Yudong Chen
54
10
0
16 Jun 2019
Learning Mixtures of Graphs from Epidemic Cascades
Jessica Hoffmann
Soumya Basu
Surbhi Goel
Constantine Caramanis
38
5
0
14 Jun 2019
EM Converges for a Mixture of Many Linear Regressions
Jeongyeol Kwon
Constantine Caramanis
72
40
0
28 May 2019
Learning Graphs from Noisy Epidemic Cascades
Jessica Hoffmann
Constantine Caramanis
110
12
0
06 Mar 2019
Iterative Least Trimmed Squares for Mixed Linear Regression
Yanyao Shen
Sujay Sanghavi
80
25
0
10 Feb 2019
1