ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.07884
  4. Cited By
Automatic Brain Tumor Segmentation using Convolutional Neural Networks
  with Test-Time Augmentation

Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

18 October 2018
Guotai Wang
Wenqi Li
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
ArXivPDFHTML

Papers citing "Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation"

13 / 13 papers shown
Title
Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Enhancing Uncertainty Estimation in Semantic Segmentation via Monte-Carlo Frequency Dropout
Tal Zeevi
Lawrence H. Staib
J. Onofrey
OOD
UQCV
50
0
0
20 Jan 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
89
1
0
25 Nov 2024
Understanding Test-Time Augmentation
Understanding Test-Time Augmentation
Masanari Kimura
ViT
11
29
0
10 Feb 2024
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
16
1
0
11 Aug 2023
SwinFSR: Stereo Image Super-Resolution using SwinIR and Frequency Domain
  Knowledge
SwinFSR: Stereo Image Super-Resolution using SwinIR and Frequency Domain Knowledge
Ke-Jia Chen
Liangyan Li
Huan Liu
Yunzhe Li
Congling Tang
Jun Chen
28
14
0
25 Apr 2023
Uncertainty-Aware AB3DMOT by Variational 3D Object Detection
Uncertainty-Aware AB3DMOT by Variational 3D Object Detection
Illia Oleksiienko
Alexandros Iosifidis
3DPC
25
1
0
12 Feb 2023
Disentangled Uncertainty and Out of Distribution Detection in Medical
  Generative Models
Disentangled Uncertainty and Out of Distribution Detection in Medical Generative Models
Kumud Lakara
Matias Valdenegro-Toro
UQCV
OOD
22
1
0
11 Nov 2022
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
Uncertainty-Guided Progressive GANs for Medical Image Translation
Uncertainty-Guided Progressive GANs for Medical Image Translation
Uddeshya Upadhyay
Yanbei Chen
Tobias Hepp
S. Gatidis
Zeynep Akata
MedIm
12
25
0
29 Jun 2021
Inter-slice Context Residual Learning for 3D Medical Image Segmentation
Inter-slice Context Residual Learning for 3D Medical Image Segmentation
Jianpeng Zhang
Yutong Xie
Yan Wang
Yong-quan Xia
SSeg
MedIm
24
88
0
28 Nov 2020
Learning Loss for Test-Time Augmentation
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
18
90
0
22 Oct 2020
Identifying the Best Machine Learning Algorithms for Brain Tumor
  Segmentation, Progression Assessment, and Overall Survival Prediction in the
  BRATS Challenge
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Spyridon Bakas
M. Reyes
Andras Jakab
Stefan Bauer
Markus Rempfler
...
Jayashree Kalpathy-Cramer
Keyvan Farahani
Christos Davatzikos
Koen van Leemput
Bjoern H. Menze
56
1,609
0
05 Nov 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1