ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08278
  4. Cited By
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences

Interpolating between Optimal Transport and MMD using Sinkhorn Divergences

18 October 2018
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
    OT
ArXivPDFHTML

Papers citing "Interpolating between Optimal Transport and MMD using Sinkhorn Divergences"

39 / 89 papers shown
Title
BITES: Balanced Individual Treatment Effect for Survival data
BITES: Balanced Individual Treatment Effect for Survival data
Stefan Schrod
Andreas Schäfer
S. Solbrig
R. Lohmayer
W. Gronwald
P. Oefner
T. Beissbarth
Rainer Spang
H. Zacharias
Michael Altenbuchinger
CML
15
22
0
05 Jan 2022
Manipulation of Granular Materials by Learning Particle Interactions
Manipulation of Granular Materials by Learning Particle Interactions
Neea Tuomainen
David Blanco Mulero
Ville Kyrki
11
20
0
03 Nov 2021
Understanding Entropic Regularization in GANs
Understanding Entropic Regularization in GANs
Daria Reshetova
Yikun Bai
Xiugang Wu
Ayfer Özgür
8
7
0
02 Nov 2021
Don't Generate Me: Training Differentially Private Generative Models
  with Sinkhorn Divergence
Don't Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence
Tianshi Cao
Alex Bie
Arash Vahdat
Sanja Fidler
Karsten Kreis
SyDa
DiffM
13
71
0
01 Nov 2021
Hamiltonian Monte Carlo with Asymmetrical Momentum Distributions
Hamiltonian Monte Carlo with Asymmetrical Momentum Distributions
Soumyadip Ghosh
Ying-Ling Lu
Aditya Gopalan
17
3
0
21 Oct 2021
Order Constraints in Optimal Transport
Order Constraints in Optimal Transport
Fabian Lim
L. Wynter
Shiau Hong Lim
OT
31
4
0
14 Oct 2021
Adversarial examples by perturbing high-level features in intermediate
  decoder layers
Adversarial examples by perturbing high-level features in intermediate decoder layers
Vojtěch Čermák
Lukáš Adam
AAML
GAN
35
0
0
14 Oct 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
27
43
0
13 Oct 2021
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP
  Tasks
KNOT: Knowledge Distillation using Optimal Transport for Solving NLP Tasks
Rishabh Bhardwaj
Tushar Vaidya
Soujanya Poria
OT
FedML
65
7
0
06 Oct 2021
Top-N: Equivariant set and graph generation without exchangeability
Top-N: Equivariant set and graph generation without exchangeability
Clément Vignac
P. Frossard
BDL
71
34
0
05 Oct 2021
Factored couplings in multi-marginal optimal transport via difference of
  convex programming
Factored couplings in multi-marginal optimal transport via difference of convex programming
Q. Tran
H. Janati
I. Redko
Rémi Flamary
Nicolas Courty
OT
35
1
0
01 Oct 2021
Optimal transport weights for causal inference
Optimal transport weights for causal inference
Eric A. Dunipace
CML
OT
28
9
0
05 Sep 2021
Fast and Scalable Optimal Transport for Brain Tractograms
Fast and Scalable Optimal Transport for Brain Tractograms
Jean Feydy
Pierre Roussillon
A. Trouvé
Pietro Gori
OT
19
24
0
05 Jul 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
24
12
0
22 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
A. Gretton
44
37
0
16 Jun 2021
PriorGrad: Improving Conditional Denoising Diffusion Models with
  Data-Dependent Adaptive Prior
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior
Sang-gil Lee
Heeseung Kim
Chaehun Shin
Xu Tan
Chang-Shu Liu
Qi Meng
Tao Qin
Wei Chen
Sung-Hoon Yoon
Tie-Yan Liu
DiffM
23
81
0
11 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
45
81
0
11 Jun 2021
A Neural Tangent Kernel Perspective of GANs
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
31
26
0
10 Jun 2021
Solving Schrödinger Bridges via Maximum Likelihood
Solving Schrödinger Bridges via Maximum Likelihood
Francisco Vargas
Pierre Thodoroff
Neil D. Lawrence
A. Lamacraft
OT
26
131
0
03 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
40
52
0
01 Jun 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
37
146
0
05 Mar 2021
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
16
48
0
02 Mar 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
41
66
0
15 Feb 2021
Smooth $p$-Wasserstein Distance: Structure, Empirical Approximation, and
  Statistical Applications
Smooth ppp-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
Sloan Nietert
Ziv Goldfeld
Kengo Kato
34
30
0
11 Jan 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
66
53
0
05 Jan 2021
Convergence and finite sample approximations of entropic regularized
  Wasserstein distances in Gaussian and RKHS settings
Convergence and finite sample approximations of entropic regularized Wasserstein distances in Gaussian and RKHS settings
M. H. Quang
54
5
0
05 Jan 2021
Permutation invariant networks to learn Wasserstein metrics
Permutation invariant networks to learn Wasserstein metrics
Arijit Sehanobish
N. Ravindra
David van Dijk
OOD
17
2
0
12 Oct 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
  Relaxation
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
22
67
0
09 Sep 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
End-to-end Sinkhorn Autoencoder with Noise Generator
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
22
22
0
11 Jun 2020
Statistical and Topological Properties of Sliced Probability Divergences
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
26
80
0
12 Mar 2020
Regularized Optimal Transport is Ground Cost Adversarial
Regularized Optimal Transport is Ground Cost Adversarial
Franccois-Pierre Paty
Marco Cuturi
OT
AAML
OOD
25
29
0
10 Feb 2020
Geometric Dataset Distances via Optimal Transport
Geometric Dataset Distances via Optimal Transport
David Alvarez-Melis
Nicolò Fusi
OT
72
194
0
07 Feb 2020
Gaussian-Smooth Optimal Transport: Metric Structure and Statistical
  Efficiency
Gaussian-Smooth Optimal Transport: Metric Structure and Statistical Efficiency
Ziv Goldfeld
Kristjan Greenewald
OT
17
39
0
24 Jan 2020
Sinkhorn Divergences for Unbalanced Optimal Transport
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
22
71
0
28 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
22
25
0
09 Oct 2019
Flat Metric Minimization with Applications in Generative Modeling
Flat Metric Minimization with Applications in Generative Modeling
Thomas Möllenhoff
Daniel Cremers
17
5
0
12 May 2019
The Born Supremacy: Quantum Advantage and Training of an Ising Born
  Machine
The Born Supremacy: Quantum Advantage and Training of an Ising Born Machine
Brian Coyle
Daniel Mills
V. Danos
E. Kashefi
27
155
0
03 Apr 2019
Wasserstein Barycenter Model Ensembling
Wasserstein Barycenter Model Ensembling
Pierre L. Dognin
Igor Melnyk
Youssef Mroueh
Jerret Ross
Cicero Nogueira dos Santos
Tom Sercu
24
24
0
13 Feb 2019
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
24
130
0
30 May 2018
Previous
12