Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.08278
Cited By
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences
18 October 2018
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpolating between Optimal Transport and MMD using Sinkhorn Divergences"
50 / 88 papers shown
Title
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
42
0
0
24 Apr 2025
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Yang Xiang
Li Fan
Chenke Yin
Menglin Kong
Chengtao Ji
OffRL
44
0
0
22 Feb 2025
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
95
1
0
24 Nov 2024
Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
Cheng-Han Yeh
Kuanchun Yu
Chun-Shien Lu
DiffM
AAML
35
0
0
22 Oct 2024
HistoKernel: Whole Slide Image Level Maximum Mean Discrepancy Kernels for Pan-Cancer Predictive Modelling
Piotr Keller
Muhammad Dawood
B. Chohan
F. Minhas
VLM
21
1
0
09 Aug 2024
Decomposing heterogeneous dynamical systems with graph neural networks
Cédric Allier
Magdalena C. Schneider
Michael Innerberger
Larissa Heinrich
J. Bogovic
S. Saalfeld
CML
AI4CE
38
0
0
27 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
38
2
0
08 Jul 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
46
3
0
26 Jun 2024
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
97
0
0
07 Jun 2024
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
32
0
0
24 May 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
38
8
0
06 Mar 2024
Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport
Haseeb Aslam
Muhammad Osama Zeeshan
Soufiane Belharbi
M. Pedersoli
A. L. Koerich
Simon L Bacon
Eric Granger
22
9
0
27 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
49
0
0
25 Dec 2023
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
34
4
0
26 Aug 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
59
10
0
05 Jul 2023
On a Relation Between the Rate-Distortion Function and Optimal Transport
E. Lei
Hamed Hassani
Shirin Saeedi Bidokhti
OT
8
2
0
01 Jul 2023
Toward Mesh-Invariant 3D Generative Deep Learning with Geometric Measures
T. Besnier
Sylvain Arguillere
E. Pierson
Mohamed Daoudi
3DH
21
8
0
27 Jun 2023
Bringing regularized optimal transport to lightspeed: a splitting method adapted for GPUs
Jacob Lindbäck
Zesen Wang
Mikael Johansson
OT
40
1
0
29 May 2023
Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction
Tung Le
Khai Nguyen
Shanlin Sun
Kun Han
Nhat Ho
Xiaohui Xie
32
5
0
27 May 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
31
1
0
25 May 2023
Feature-aligned N-BEATS with Sinkhorn divergence
Joon-Young Lee
Myeongho Jeon
Myung-joo Kang
Kyung-soon Park
AI4TS
24
0
0
24 May 2023
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
34
9
0
16 May 2023
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
25
21
0
26 Apr 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
22
2
0
26 Mar 2023
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
18
11
0
21 Mar 2023
Transformed Distribution Matching for Missing Value Imputation
He Zhao
Ke Sun
Amir Dezfouli
Edwin V. Bonilla
34
19
0
20 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
55
26
0
09 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
29
12
0
31 Jan 2023
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
22
4
0
24 Nov 2022
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
24
19
0
21 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
David Alvarez-Melis
Nicolò Fusi
Lester W. Mackey
Tal Wagner
OT
30
1
0
24 Oct 2022
Geometric Sparse Coding in Wasserstein Space
M. Mueller
Shuchin Aeron
James M. Murphy
Abiy Tasissa
14
4
0
21 Oct 2022
Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance
O. Kitouni
Niklas Nolte
Mike Williams
13
8
0
30 Sep 2022
Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal Classification
Biswadeep Chakraborty
Saibal Mukhopadhyay
26
20
0
22 Sep 2022
Learning Deep Optimal Embeddings with Sinkhorn Divergences
S. Roy
Yan Han
Mehrtash Harandi
L. Petersson
20
0
0
14 Sep 2022
StreamNet: A WAE for White Matter Streamline Analysis
Andrew Lizarraga
K. Narr
Kristy A. Donald
S. H. Joshi
25
4
0
03 Sep 2022
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
27
17
0
31 Aug 2022
Information-Theoretic Equivalence of Entropic Multi-Marginal Optimal Transport: A Theory for Multi-Agent Communication
Shuchan Wang
OT
25
0
0
22 Aug 2022
Limit Theorems for Entropic Optimal Transport Maps and the Sinkhorn Divergence
Ziv Goldfeld
Kengo Kato
Gabriel Rioux
Ritwik Sadhu
42
27
0
18 Jul 2022
Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
19
22
0
15 Jul 2022
Diffeomorphic Registration using Sinkhorn Divergences
Lucas de Lara
Alberto González Sanz
Jean-Michel Loubes
FedML
22
8
0
28 Jun 2022
On making optimal transport robust to all outliers
Kilian Fatras
OT
19
0
0
23 Jun 2022
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
27
27
0
17 Jun 2022
Riemannian Metric Learning via Optimal Transport
Christopher Scarvelis
Justin Solomon
OT
42
11
0
18 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
31
20
0
14 May 2022
Learning Disentangled Textual Representations via Statistical Measures of Similarity
Pierre Colombo
Guillaume Staerman
Nathan Noiry
Pablo Piantanida
FaML
DRL
38
22
0
07 May 2022
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
34
32
0
19 Apr 2022
Optimal Transport of Classifiers to Fairness
Maarten Buyl
T. D. Bie
FaML
13
10
0
08 Feb 2022
1
2
Next