ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08278
  4. Cited By
Interpolating between Optimal Transport and MMD using Sinkhorn
  Divergences

Interpolating between Optimal Transport and MMD using Sinkhorn Divergences

18 October 2018
Jean Feydy
Thibault Séjourné
François-Xavier Vialard
S. Amari
A. Trouvé
Gabriel Peyré
    OT
ArXivPDFHTML

Papers citing "Interpolating between Optimal Transport and MMD using Sinkhorn Divergences"

50 / 88 papers shown
Title
Flow Matching Ergodic Coverage
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
42
0
0
24 Apr 2025
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Exploiting Epistemic Uncertainty in Cold-Start Recommendation Systems
Yang Xiang
Li Fan
Chenke Yin
Menglin Kong
Chengtao Ji
OffRL
44
0
0
22 Feb 2025
Expert-elicitation method for non-parametric joint priors using normalizing flows
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
95
1
0
24 Nov 2024
Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
Cheng-Han Yeh
Kuanchun Yu
Chun-Shien Lu
DiffM
AAML
35
0
0
22 Oct 2024
HistoKernel: Whole Slide Image Level Maximum Mean Discrepancy Kernels
  for Pan-Cancer Predictive Modelling
HistoKernel: Whole Slide Image Level Maximum Mean Discrepancy Kernels for Pan-Cancer Predictive Modelling
Piotr Keller
Muhammad Dawood
B. Chohan
F. Minhas
VLM
21
1
0
09 Aug 2024
Decomposing heterogeneous dynamical systems with graph neural networks
Decomposing heterogeneous dynamical systems with graph neural networks
Cédric Allier
Magdalena C. Schneider
Michael Innerberger
Larissa Heinrich
J. Bogovic
S. Saalfeld
CML
AI4CE
38
0
0
27 Jul 2024
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking
  Neural Networks for Energy-Efficient Edge Computing
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
38
2
0
08 Jul 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
46
3
0
26 Jun 2024
Submodular Framework for Structured-Sparse Optimal Transport
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
97
0
0
07 Jun 2024
Consistency of Neural Causal Partial Identification
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
32
0
0
24 May 2024
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales
  for Pruning Recurrent SNN
Sparse Spiking Neural Network: Exploiting Heterogeneity in Timescales for Pruning Recurrent SNN
Biswadeep Chakraborty
Beomseok Kang
H. Kumar
Saibal Mukhopadhyay
38
8
0
06 Mar 2024
Distilling Privileged Multimodal Information for Expression Recognition
  using Optimal Transport
Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport
Haseeb Aslam
Muhammad Osama Zeeshan
Soufiane Belharbi
M. Pedersoli
A. L. Koerich
Simon L Bacon
Eric Granger
22
9
0
27 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
49
0
0
25 Dec 2023
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
Optimal Transport-inspired Deep Learning Framework for Slow-Decaying Kolmogorov n-width Problems: Exploiting Sinkhorn Loss and Wasserstein Kernel
M. Khamlich
F. Pichi
G. Rozza
34
4
0
26 Aug 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from
  Partially Revealed Sources
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
59
10
0
05 Jul 2023
On a Relation Between the Rate-Distortion Function and Optimal Transport
On a Relation Between the Rate-Distortion Function and Optimal Transport
E. Lei
Hamed Hassani
Shirin Saeedi Bidokhti
OT
8
2
0
01 Jul 2023
Toward Mesh-Invariant 3D Generative Deep Learning with Geometric
  Measures
Toward Mesh-Invariant 3D Generative Deep Learning with Geometric Measures
T. Besnier
Sylvain Arguillere
E. Pierson
Mohamed Daoudi
3DH
21
8
0
27 Jun 2023
Bringing regularized optimal transport to lightspeed: a splitting method
  adapted for GPUs
Bringing regularized optimal transport to lightspeed: a splitting method adapted for GPUs
Jacob Lindbäck
Zesen Wang
Mikael Johansson
OT
40
1
0
29 May 2023
Diffeomorphic Mesh Deformation via Efficient Optimal Transport for
  Cortical Surface Reconstruction
Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction
Tung Le
Khai Nguyen
Shanlin Sun
Kun Han
Nhat Ho
Xiaohui Xie
32
5
0
27 May 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
31
1
0
25 May 2023
Feature-aligned N-BEATS with Sinkhorn divergence
Feature-aligned N-BEATS with Sinkhorn divergence
Joon-Young Lee
Myeongho Jeon
Myung-joo Kang
Kyung-soon Park
AI4TS
24
0
0
24 May 2023
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth
  Costs
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
34
9
0
16 May 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
25
21
0
26 Apr 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
22
2
0
26 Mar 2023
Doubly Regularized Entropic Wasserstein Barycenters
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
18
11
0
21 Mar 2023
Transformed Distribution Matching for Missing Value Imputation
Transformed Distribution Matching for Missing Value Imputation
He Zhao
Ke Sun
Amir Dezfouli
Edwin V. Bonilla
34
19
0
20 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
55
26
0
09 Feb 2023
Self-Consistent Velocity Matching of Probability Flows
Self-Consistent Velocity Matching of Probability Flows
Lingxiao Li
Samuel Hurault
Justin Solomon
29
12
0
31 Jan 2023
Estimating Regression Predictive Distributions with Sample Networks
Estimating Regression Predictive Distributions with Sample Networks
Ali Harakeh
Jordan S. K. Hu
Naiqing Guan
Steven L. Waslander
Liam Paull
BDL
UQCV
22
4
0
24 Nov 2022
Representational dissimilarity metric spaces for stochastic neural
  networks
Representational dissimilarity metric spaces for stochastic neural networks
Lyndon Duong
Jingyang Zhou
Josue Nassar
Jules Berman
Jeroen Olieslagers
Alex H. Williams
24
19
0
21 Nov 2022
Unbalanced Optimal Transport, from Theory to Numerics
Unbalanced Optimal Transport, from Theory to Numerics
Thibault Séjourné
Gabriel Peyré
Franccois-Xavier Vialard
OT
25
47
0
16 Nov 2022
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
Budget-Constrained Bounds for Mini-Batch Estimation of Optimal Transport
David Alvarez-Melis
Nicolò Fusi
Lester W. Mackey
Tal Wagner
OT
30
1
0
24 Oct 2022
Geometric Sparse Coding in Wasserstein Space
Geometric Sparse Coding in Wasserstein Space
M. Mueller
Shuchin Aeron
James M. Murphy
Abiy Tasissa
14
4
0
21 Oct 2022
Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy
  Mover's Distance
Finding NEEMo: Geometric Fitting using Neural Estimation of the Energy Mover's Distance
O. Kitouni
Niklas Nolte
Mike Williams
13
8
0
30 Sep 2022
Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
  Classification
Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal Classification
Biswadeep Chakraborty
Saibal Mukhopadhyay
26
20
0
22 Sep 2022
Learning Deep Optimal Embeddings with Sinkhorn Divergences
Learning Deep Optimal Embeddings with Sinkhorn Divergences
S. Roy
Yan Han
Mehrtash Harandi
L. Petersson
20
0
0
14 Sep 2022
StreamNet: A WAE for White Matter Streamline Analysis
StreamNet: A WAE for White Matter Streamline Analysis
Andrew Lizarraga
K. Narr
Kristy A. Donald
S. H. Joshi
25
4
0
03 Sep 2022
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
27
17
0
31 Aug 2022
Information-Theoretic Equivalence of Entropic Multi-Marginal Optimal Transport: A Theory for Multi-Agent Communication
Shuchan Wang
OT
25
0
0
22 Aug 2022
Limit Theorems for Entropic Optimal Transport Maps and the Sinkhorn
  Divergence
Limit Theorems for Entropic Optimal Transport Maps and the Sinkhorn Divergence
Ziv Goldfeld
Kengo Kato
Gabriel Rioux
Ritwik Sadhu
42
27
0
18 Jul 2022
Weak limits of entropy regularized Optimal Transport; potentials, plans
  and divergences
Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
19
22
0
15 Jul 2022
Diffeomorphic Registration using Sinkhorn Divergences
Diffeomorphic Registration using Sinkhorn Divergences
Lucas de Lara
Alberto González Sanz
Jean-Michel Loubes
FedML
22
8
0
28 Jun 2022
On making optimal transport robust to all outliers
On making optimal transport robust to all outliers
Kilian Fatras
OT
19
0
0
23 Jun 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
27
27
0
17 Jun 2022
Riemannian Metric Learning via Optimal Transport
Riemannian Metric Learning via Optimal Transport
Christopher Scarvelis
Justin Solomon
OT
42
11
0
18 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
31
20
0
14 May 2022
Learning Disentangled Textual Representations via Statistical Measures
  of Similarity
Learning Disentangled Textual Representations via Statistical Measures of Similarity
Pierre Colombo
Guillaume Staerman
Nathan Noiry
Pablo Piantanida
FaML
DRL
38
22
0
07 May 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
34
32
0
19 Apr 2022
Optimal Transport of Classifiers to Fairness
Optimal Transport of Classifiers to Fairness
Maarten Buyl
T. D. Bie
FaML
13
10
0
08 Feb 2022
12
Next