Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.09675
Cited By
SwitchNet: a neural network model for forward and inverse scattering problems
23 October 2018
Y. Khoo
Lexing Ying
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SwitchNet: a neural network model for forward and inverse scattering problems"
19 / 19 papers shown
Title
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
28
0
0
21 Aug 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
34
5
0
19 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
65
5
0
05 Jan 2024
A Direct Sampling-Based Deep Learning Approach for Inverse Medium Scattering Problems
Jianfeng Ning
Fuqun Han
Jun Zou
26
11
0
29 Apr 2023
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
27
2
0
22 Feb 2023
Deep Injective Prior for Inverse Scattering
AmirEhsan Khorashadizadeh
Vahid Khorashadi-Zadeh
Sepehr Eskandari
Guy A. E. Vandenbosch
Ivan Dokmanić
18
7
0
08 Jan 2023
A Neural Network Warm-Start Approach for the Inverse Acoustic Obstacle Scattering Problem
Mo Zhou
Jiequn Han
M. Rachh
C. Borges
AI4CE
24
11
0
16 Dec 2022
Multigrid-augmented deep learning preconditioners for the Helmholtz equation
Yael Azulay
Eran Treister
AI4CE
22
30
0
14 Mar 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
52
440
0
19 Aug 2021
ResMLP: Feedforward networks for image classification with data-efficient training
Hugo Touvron
Piotr Bojanowski
Mathilde Caron
Matthieu Cord
Alaaeldin El-Nouby
...
Gautier Izacard
Armand Joulin
Gabriel Synnaeve
Jakob Verbeek
Hervé Jégou
VLM
30
656
0
07 May 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
Wide-band butterfly network: stable and efficient inversion via multi-frequency neural networks
Matthew T.C. Li
L. Demanet
Leonardo Zepeda-Núnez
35
8
0
24 Nov 2020
Butterfly-Net2: Simplified Butterfly-Net and Fourier Transform Initialization
Zhongshu Xu
Yingzhou Li
Xiuyuan Cheng
19
8
0
09 Dec 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
22
39
0
16 Jun 2019
Solving Electrical Impedance Tomography with Deep Learning
Yuwei Fan
Lexing Ying
22
100
0
06 Jun 2019
Variational training of neural network approximations of solution maps for physical models
Yingzhou Li
Jianfeng Lu
Anqi Mao
GAN
19
35
0
07 May 2019
Butterfly-Net: Optimal Function Representation Based on Convolutional Neural Networks
Yingzhou Li
Xiuyuan Cheng
Jianfeng Lu
21
23
0
18 May 2018
1