Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.10180
Cited By
Understanding and correcting pathologies in the training of learned optimizers
24 October 2018
Luke Metz
Niru Maheswaranathan
Jeremy Nixon
C. Freeman
Jascha Narain Sohl-Dickstein
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding and correcting pathologies in the training of learned optimizers"
50 / 51 papers shown
Title
Optimization Problem Solving Can Transition to Evolutionary Agentic Workflows
Wenhao Li
Bo Jin
Mingyi Hong
Changhong Lu
Xiangfeng Wang
48
0
0
07 May 2025
Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
Maxence Faldor
Robert Tjarko Lange
Antoine Cully
81
0
0
04 Feb 2025
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
168
0
0
22 Jan 2025
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
42
3
0
09 Jul 2024
From Learning to Optimize to Learning Optimization Algorithms
Camille Castera
Peter Ochs
65
1
0
28 May 2024
The boundary of neural network trainability is fractal
Jascha Narain Sohl-Dickstein
36
8
0
09 Feb 2024
Investigation into the Training Dynamics of Learned Optimizers
Jan Sobotka
Petr Simánek
Daniel Vasata
28
0
0
12 Dec 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
51
5
0
21 Apr 2023
Learning To Optimize Quantum Neural Network Without Gradients
Ankit Kulshrestha
Xiaoyuan Liu
Hayato Ushijima-Mwesigwa
Ilya Safro
25
5
0
15 Apr 2023
Symbolic Discovery of Optimization Algorithms
Xiangning Chen
Chen Liang
Da Huang
Esteban Real
Kaiyuan Wang
...
Xuanyi Dong
Thang Luong
Cho-Jui Hsieh
Yifeng Lu
Quoc V. Le
67
352
0
13 Feb 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
26
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
37
122
0
19 Jan 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
40
72
0
08 Dec 2022
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
18
11
0
02 Dec 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
44
47
0
21 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
65
0
26 Sep 2022
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
Risto Vuorio
Jacob Beck
Shimon Whiteson
Jakob N. Foerster
Gregory Farquhar
27
8
0
22 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen Ma
Zixuan Liu
Xue Liu
94
35
0
24 Jul 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
47
151
0
01 Jun 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
32
36
0
27 May 2022
Meta-AF: Meta-Learning for Adaptive Filters
Jonah Casebeer
Nicholas J. Bryan
Paris Smaragdis
159
28
0
25 Apr 2022
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
38
32
0
22 Mar 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
45
19
0
13 Mar 2022
Do Differentiable Simulators Give Better Policy Gradients?
H. Suh
Max Simchowitz
Kaipeng Zhang
Russ Tedrake
32
95
0
02 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
33
2
0
24 Nov 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
93
0
10 Nov 2021
Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection
HanQin Cai
Jialin Liu
W. Yin
35
39
0
11 Oct 2021
Auto-DSP: Learning to Optimize Acoustic Echo Cancellers
Jonah Casebeer
Nicholas J. Bryan
Paris Smaragdis
25
10
0
08 Oct 2021
Introducing Symmetries to Black Box Meta Reinforcement Learning
Louis Kirsch
Sebastian Flennerhag
Hado van Hasselt
A. Friesen
Junhyuk Oh
Yutian Chen
22
30
0
22 Sep 2021
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
Accelerating Quadratic Optimization with Reinforcement Learning
Jeffrey Ichnowski
Paras Jain
Bartolomeo Stellato
G. Banjac
Michael Luo
Francesco Borrelli
Joseph E. Gonzalez
Ion Stoica
Ken Goldberg
OffRL
19
35
0
22 Jul 2021
Learn2Hop: Learned Optimization on Rough Landscapes
Amil Merchant
Luke Metz
S. Schoenholz
E. D. Cubuk
31
16
0
20 Jul 2021
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation
C. Freeman
Erik Frey
Anton Raichuk
Sertan Girgin
Igor Mordatch
Olivier Bachem
48
350
0
24 Jun 2021
Stateless Neural Meta-Learning using Second-Order Gradients
Mike Huisman
Aske Plaat
Jan N. van Rijn
26
7
0
21 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
40
225
0
23 Mar 2021
Training Learned Optimizers with Randomly Initialized Learned Optimizers
Luke Metz
C. Freeman
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
43
12
0
14 Jan 2021
Reverse engineering learned optimizers reveals known and novel mechanisms
Niru Maheswaranathan
David Sussillo
Luke Metz
Ruoxi Sun
Jascha Narain Sohl-Dickstein
22
21
0
04 Nov 2020
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
25
51
0
18 Oct 2020
Learning the Step-size Policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
Lucas N. Egidio
A. Hansson
B. Wahlberg
16
12
0
03 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
55
1,935
0
11 Apr 2020
Using learned optimizers to make models robust to input noise
Luke Metz
Niru Maheswaranathan
Jonathon Shlens
Jascha Narain Sohl-Dickstein
E. D. Cubuk
VLM
OOD
17
26
0
08 Jun 2019
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
717
0
13 Jun 2018
1
2
Next