Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11393
Cited By
Dendritic cortical microcircuits approximate the backpropagation algorithm
26 October 2018
João Sacramento
Rui Ponte Costa
Yoshua Bengio
Walter Senn
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dendritic cortical microcircuits approximate the backpropagation algorithm"
50 / 124 papers shown
Title
Minimizing Control for Credit Assignment with Strong Feedback
Alexander Meulemans
Matilde Tristany Farinha
Maria R. Cervera
João Sacramento
Benjamin Grewe
22
17
0
14 Apr 2022
Deep Learning in Spiking Phasor Neural Networks
Connor Bybee
E. P. Frady
Friedrich T. Sommer
21
6
0
01 Apr 2022
Learning by non-interfering feedback chemical signaling in physical networks
Vidyesh Rao Anisetti
B. Scellier
J. M. Schwarz
19
17
0
22 Mar 2022
Constrained Parameter Inference as a Principle for Learning
Nasir Ahmad
Ellen Schrader
Marcel van Gerven
20
10
0
22 Mar 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
31
3
0
01 Feb 2022
Towards Scaling Difference Target Propagation by Learning Backprop Targets
M. Ernoult
Fabrice Normandin
A. Moudgil
Sean Spinney
Eugene Belilovsky
Irina Rish
Blake A. Richards
Yoshua Bengio
19
28
0
31 Jan 2022
Learning on Arbitrary Graph Topologies via Predictive Coding
Tommaso Salvatori
Luca Pinchetti
Beren Millidge
Yuhang Song
Tianyi Bao
Rafal Bogacz
Thomas Lukasiewicz
40
33
0
31 Jan 2022
DELAUNAY: a dataset of abstract art for psychophysical and machine learning research
C. Gontier
Jakob Jordan
Mihai A. Petrovici
38
2
0
28 Jan 2022
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
Giorgia Dellaferrera
Gabriel Kreiman
31
53
0
27 Jan 2022
Including STDP to eligibility propagation in multi-layer recurrent spiking neural networks
Werner van der Veen
41
1
0
05 Jan 2022
Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time
Bojian Yin
Federico Corradi
S. Bohté
38
61
0
20 Dec 2021
A Normative and Biologically Plausible Algorithm for Independent Component Analysis
Yanis Bahroun
D. Chklovskii
Anirvan M. Sengupta
29
10
0
17 Nov 2021
How and When Random Feedback Works: A Case Study of Low-Rank Matrix Factorization
Shivam Garg
Santosh Vempala
33
3
0
17 Nov 2021
BioLeaF: A Bio-plausible Learning Framework for Training of Spiking Neural Networks
Yukun Yang
Peng Li
29
3
0
14 Nov 2021
A New Look at Spike-Timing-Dependent Plasticity Networks for Spatio-Temporal Feature Learning
A. Safa
I. Ocket
A. Bourdoux
Hichem Sahli
F. Catthoor
Georges G. E. Gielen
21
8
0
01 Nov 2021
Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons
Paul Haider
B. Ellenberger
Laura Kriener
Jakob Jordan
Walter Senn
Mihai A. Petrovici
27
24
0
27 Oct 2021
Cortico-cerebellar networks as decoupling neural interfaces
J. Pemberton
E. Boven
Richard Apps
Rui Ponte Costa
35
6
0
21 Oct 2021
Assemblies of neurons learn to classify well-separated distributions
M. Dabagia
Christos H. Papadimitriou
Santosh Vempala
24
8
0
07 Oct 2021
Variational learning of quantum ground states on spiking neuromorphic hardware
Robert Klassert
A. Baumbach
Mihai A. Petrovici
M. Gärttner
28
7
0
30 Sep 2021
Learning through structure: towards deep neuromorphic knowledge graph embeddings
Victor Caceres Chian
Marcel Hildebrandt
Thomas Runkler
Dominik Dold
GNN
16
7
0
21 Sep 2021
Learning cortical representations through perturbed and adversarial dreaming
Nicolas Deperrois
Mihai A. Petrovici
Walter Senn
Jakob Jordan
GAN
CLL
58
21
0
09 Sep 2021
Online Training of Spiking Recurrent Neural Networks with Phase-Change Memory Synapses
Yiğit Demirağ
Charlotte Frenkel
Melika Payvand
Giacomo Indiveri
30
17
0
04 Aug 2021
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans
Matilde Tristany Farinha
Javier García Ordónez
Pau Vilimelis Aceituno
João Sacramento
Benjamin Grewe
31
35
0
15 Jun 2021
The Backpropagation Algorithm Implemented on Spiking Neuromorphic Hardware
Alpha Renner
F. Sheldon
Anatoly Zlotnik
L. Tao
A. Sornborger
21
38
0
13 Jun 2021
Front Contribution instead of Back Propagation
Swaroop Mishra
Anjana Arunkumar
17
0
0
10 Jun 2021
Bottom-up and top-down approaches for the design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial intelligence
Charlotte Frenkel
D. Bol
Giacomo Indiveri
36
34
0
02 Jun 2021
Neko: a Library for Exploring Neuromorphic Learning Rules
Zixuan Zhao
Nathan Wycoff
N. Getty
Rick L. Stevens
Fangfang Xia
17
2
0
01 May 2021
An error-propagation spiking neural network compatible with neuromorphic processors
M. Cartiglia
G. Haessig
Giacomo Indiveri
17
5
0
12 Apr 2021
A contrastive rule for meta-learning
Nicolas Zucchet
Simon Schug
J. Oswald
Dominic Zhao
João Sacramento
MLT
33
19
0
04 Apr 2021
Self-learning Machines based on Hamiltonian Echo Backpropagation
V. López-Pastor
F. Marquardt
54
33
0
08 Mar 2021
Reverse Differentiation via Predictive Coding
Tommaso Salvatori
Yuhang Song
Thomas Lukasiewicz
Rafal Bogacz
Zhenghua Xu
PINN
30
26
0
08 Mar 2021
The Yin-Yang dataset
Laura Kriener
Julian Goltz
Mihai A. Petrovici
3DH
35
19
0
16 Feb 2021
The Neural Coding Framework for Learning Generative Models
Alexander Ororbia
Daniel Kifer
GAN
26
65
0
07 Dec 2020
A biologically plausible neural network for local supervision in cortical microcircuits
Siavash Golkar
David Lipshutz
Yanis Bahroun
Anirvan M. Sengupta
D. Chklovskii
13
7
0
30 Nov 2020
Kernel Dependence Network
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
16
0
0
04 Nov 2020
A simple normative network approximates local non-Hebbian learning in the cortex
Siavash Golkar
David Lipshutz
Yanis Bahroun
Anirvan M. Sengupta
D. Chklovskii
OffRL
9
15
0
23 Oct 2020
Brain-Inspired Learning on Neuromorphic Substrates
Friedemann Zenke
Emre Neftci
38
89
0
22 Oct 2020
Local plasticity rules can learn deep representations using self-supervised contrastive predictions
Bernd Illing
Jean-Paul Ventura
G. Bellec
W. Gerstner
SSL
DRL
59
69
0
16 Oct 2020
EqSpike: Spike-driven Equilibrium Propagation for Neuromorphic Implementations
Erwann Martin
M. Ernoult
Jérémie Laydevant
Shuai-shuai Li
D. Querlioz
Teodora Petrisor
Julie Grollier
17
49
0
15 Oct 2020
Investigating the Scalability and Biological Plausibility of the Activation Relaxation Algorithm
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
22
0
0
13 Oct 2020
Relaxing the Constraints on Predictive Coding Models
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
26
23
0
02 Oct 2020
A biologically plausible neural network for multi-channel Canonical Correlation Analysis
David Lipshutz
Yanis Bahroun
Siavash Golkar
Anirvan M. Sengupta
Dmitri B. Chkovskii
6
23
0
01 Oct 2020
Activation Relaxation: A Local Dynamical Approximation to Backpropagation in the Brain
Beren Millidge
Alexander Tschantz
A. Seth
Christopher L. Buckley
ODL
28
16
0
11 Sep 2020
Hardware Implementation of Deep Network Accelerators Towards Healthcare and Biomedical Applications
M. R. Azghadi
Corey Lammie
Jason K. Eshraghian
Melika Payvand
Elisa Donati
B. Linares-Barranco
Giacomo Indiveri
30
139
0
11 Jul 2020
Biological credit assignment through dynamic inversion of feedforward networks
William F. Podlaski
C. Machens
27
19
0
10 Jul 2020
Deep Reinforcement Learning and its Neuroscientific Implications
M. Botvinick
Jane X. Wang
Will Dabney
Kevin J. Miller
Z. Kurth-Nelson
OffRL
AI4CE
28
169
0
07 Jul 2020
Meta-Learning through Hebbian Plasticity in Random Networks
Elias Najarro
S. Risi
30
77
0
06 Jul 2020
A Theoretical Framework for Target Propagation
Alexander Meulemans
Francesco S. Carzaniga
Johan A. K. Suykens
João Sacramento
Benjamin Grewe
AAML
33
77
0
25 Jun 2020
Kernelized information bottleneck leads to biologically plausible 3-factor Hebbian learning in deep networks
Roman Pogodin
P. Latham
24
34
0
12 Jun 2020
Predictive Coding Approximates Backprop along Arbitrary Computation Graphs
Beren Millidge
Alexander Tschantz
Christopher L. Buckley
32
118
0
07 Jun 2020
Previous
1
2
3
Next