ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11738
  4. Cited By
Gaussian Process Prior Variational Autoencoders

Gaussian Process Prior Variational Autoencoders

28 October 2018
F. P. Casale
Adrian Dalca
Luca Saglietti
Jennifer Listgarten
Nicolò Fusi
    BDL
    CML
ArXivPDFHTML

Papers citing "Gaussian Process Prior Variational Autoencoders"

33 / 33 papers shown
Title
Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling
Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling
Xinxing Shi
Xiaoyu Jiang
Mauricio A. Álvarez
BDL
70
0
0
22 May 2025
Compression, Regularity, Randomness and Emergent Structure: Rethinking Physical Complexity in the Data-Driven Era
Compression, Regularity, Randomness and Emergent Structure: Rethinking Physical Complexity in the Data-Driven Era
Nima Dehghani
AI4CE
61
0
0
12 May 2025
Likelihood-Free Variational Autoencoders
Likelihood-Free Variational Autoencoders
Chen Xu
Qiang Wang
Lijun Sun
DiffM
DRL
111
0
0
24 Apr 2025
Boundary-enhanced time series data imputation with long-term dependency diffusion models
Boundary-enhanced time series data imputation with long-term dependency diffusion models
Chunjing Xiao
Xue Jiang
Xianghe Du
Wei Yang
Wei Lu
Xinyu Wang
Kevin Chetty
91
2
0
11 Jan 2025
Latent Space Energy-based Neural ODEs
Latent Space Energy-based Neural ODEs
Sheng Cheng
Deqian Kong
Jianwen Xie
Kookjin Lee
Ying Nian Wu
Yezhou Yang
DiffM
341
1
0
05 Sep 2024
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
151
30,069
0
01 Mar 2022
Predictive Modeling of Anatomy with Genetic and Clinical Data
Predictive Modeling of Anatomy with Genetic and Clinical Data
Adrian Dalca
R. Sridharan
M. Sabuncu
Polina Golland
MedIm
21
7
0
09 Oct 2020
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Mike Wu
Noah D. Goodman
DRL
61
379
0
14 Feb 2018
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
110
359
0
01 Jun 2017
Generative Models of Visually Grounded Imagination
Generative Models of Visually Grounded Imagination
Ramakrishna Vedantam
Ian S. Fischer
Jonathan Huang
Kevin Patrick Murphy
46
138
0
30 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
55
628
0
19 May 2017
Inducing Interpretable Representations with Variational Autoencoders
Inducing Interpretable Representations with Variational Autoencoders
N. Siddharth
Brooks Paige
Alban Desmaison
Jan-Willem van de Meent
Frank Wood
Noah D. Goodman
Pushmeet Kohli
Philip Torr
BDL
DRL
43
6
0
22 Nov 2016
Variational Deep Embedding: An Unsupervised and Generative Approach to
  Clustering
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering
Zhuxi Jiang
Yin Zheng
Huachun Tan
Bangsheng Tang
Hanning Zhou
BDL
DRL
62
726
0
16 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
111
674
0
08 Nov 2016
Joint Multimodal Learning with Deep Generative Models
Joint Multimodal Learning with Deep Generative Models
Masahiro Suzuki
Kotaro Nakayama
Y. Matsuo
DRL
GAN
56
222
0
07 Nov 2016
Deep Variational Canonical Correlation Analysis
Deep Variational Canonical Correlation Analysis
Weiran Wang
Xinchen Yan
Honglak Lee
Karen Livescu
DRL
BDL
39
143
0
11 Oct 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
83
1,805
0
15 Jun 2016
Understanding Probabilistic Sparse Gaussian Process Approximations
Understanding Probabilistic Sparse Gaussian Process Approximations
Matthias Bauer
Mark van der Wilk
C. Rasmussen
41
257
0
15 Jun 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
67
483
0
20 Mar 2016
Auxiliary Deep Generative Models
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRL
GAN
63
450
0
17 Feb 2016
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
62
184
0
20 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
60
334
0
07 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
189
882
0
06 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
258
4,143
0
21 May 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
78
929
0
11 Mar 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
59
512
0
03 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
857
149,474
0
22 Dec 2014
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GAN
SSL
BDL
68
2,731
0
20 Jun 2014
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
60
150
0
06 Feb 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
367
16,962
0
20 Dec 2013
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
83
1,226
0
26 Sep 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
56
604
0
18 Feb 2013
Additive Covariance Kernels for High-Dimensional Gaussian Process
  Modeling
Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
L. Carraro
68
100
0
27 Nov 2011
1