Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11908
Cited By
Mean-field theory of graph neural networks in graph partitioning
29 October 2018
T. Kawamoto
Masashi Tsubaki
T. Obuchi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Mean-field theory of graph neural networks in graph partitioning"
27 / 27 papers shown
Title
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
96
0
0
20 May 2025
Learning to Control the Smoothness of Graph Convolutional Network Features
Shih-Hsin Wang
Justin Baker
Cory Hauck
Bao Wang
65
0
0
18 Oct 2024
Generated Contents Enrichment
Mahdi Naseri
Jiayan Qiu
Zhou Wang
88
0
0
06 May 2024
Understanding and Guiding Weakly Supervised Entity Alignment with Potential Isomorphism Propagation
Yuanyi Wang
Wei Tang
Haifeng Sun
Zirui Zhuang
Xiaoyuan Fu
Jingyu Wang
Qi Qi
Jianxin Liao
83
1
0
05 Feb 2024
Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant
S. Martino
João Morado
Chenghao Li
Zhenghao Lu
E. Rosta
GNN
18
1
0
22 Dec 2023
Multi-Factor Spatio-Temporal Prediction based on Graph Decomposition Learning
Jiahao Ji
Jingyuan Wang
Yu Mou
Cheng Long
AI4TS
56
1
0
16 Oct 2023
Identification of Causal Relationship between Amyloid-beta Accumulation and Alzheimer's Disease Progression via Counterfactual Inference
Haixing Dai
Mengxuan Hu
Qing Li
Lu Zhang
Lin Zhao
...
Manhua Liu
Quanzheng Li
Sheng Li
Tianming Liu
Xiang Li
CML
OOD
106
2
0
03 Jul 2023
Analysis of Convolutions, Non-linearity and Depth in Graph Neural Networks using Neural Tangent Kernel
Mahalakshmi Sabanayagam
Pascal Esser
Debarghya Ghoshdastidar
113
2
0
18 Oct 2022
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks
Pascal Esser
L. C. Vankadara
Debarghya Ghoshdastidar
69
56
0
07 Dec 2021
Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters
Takanori Maehara
Hoang NT
82
2
0
05 Nov 2021
New Insights into Graph Convolutional Networks using Neural Tangent Kernels
Mahalakshmi Sabanayagam
Pascal Esser
Debarghya Ghoshdastidar
53
6
0
08 Oct 2021
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
91
23
0
06 Oct 2021
Graph-Convolutional Deep Learning to Identify Optimized Molecular Configurations
Eshan Joshi
S. Somuyiwa
H. Jooya
GNN
42
0
0
22 Aug 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
160
20
0
21 Jul 2021
A Deep Graph Neural Networks Architecture Design: From Global Pyramid-like Shrinkage Skeleton to Local Topology Link Rewiring
Gege Zhang
23
0
0
16 Dec 2020
Applying Convolutional Neural Networks to Data on Unstructured Meshes with Space-Filling Curves
Claire E. Heaney
Yuling Li
Omar K. Matar
Christopher C. Pain
AI4CE
66
17
0
24 Nov 2020
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
140
230
0
30 Sep 2020
Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks
Amol Kapoor
X. Ben
Luyang Liu
Bryan Perozzi
Matt Barnes
Martin J. Blais
S. O’Banion
78
196
0
06 Jul 2020
The Power of Graph Convolutional Networks to Distinguish Random Graph Models: Short Version
Abram Magner
Mayank Baranwal
Alfred Hero
GNN
49
14
0
13 Feb 2020
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
122
33
0
03 Nov 2019
Fundamental Limits of Deep Graph Convolutional Networks
Abram Magner
Mayank Baranwal
Alfred Hero
GNN
51
7
0
28 Oct 2019
Revisiting Graph Neural Networks: All We Have is Low-Pass Filters
Hoang NT
Takanori Maehara
GNN
139
434
0
23 May 2019
GAP: Generalizable Approximate Graph Partitioning Framework
Azade Nazi
W. Hang
Anna Goldie
Sujith Ravi
Azalia Mirhoseini
78
61
0
02 Mar 2019
Simultaneous Subspace Clustering and Cluster Number Estimating based on Triplet Relationship
Jie Liang
Jufeng Yang
Ming-Ming Cheng
Paul L. Rosin
Liang Wang
28
17
0
23 Jan 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
825
8,624
0
03 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
1.2K
5,588
0
20 Dec 2018
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
225
1,701
0
14 Oct 2018
1