Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.03962
Cited By
A Convergence Theory for Deep Learning via Over-Parameterization
9 November 2018
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Convergence Theory for Deep Learning via Over-Parameterization"
50 / 370 papers shown
Title
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
235
0
04 Mar 2020
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
Chaoyue Liu
Libin Zhu
M. Belkin
ODL
17
248
0
29 Feb 2020
Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-layer Networks
Mert Pilanci
Tolga Ergen
29
116
0
24 Feb 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
166
0
21 Feb 2020
Learning Parities with Neural Networks
Amit Daniely
Eran Malach
24
76
0
18 Feb 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
29
51
0
16 Feb 2020
Distribution Approximation and Statistical Estimation Guarantees of Generative Adversarial Networks
Minshuo Chen
Wenjing Liao
H. Zha
Tuo Zhao
26
15
0
10 Feb 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
64
271
0
03 Feb 2020
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Kamiel Magda Vercauteren
OOD
22
10
0
08 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
37
19
0
31 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Adaptive dynamic programming for nonaffine nonlinear optimal control problem with state constraints
Jingliang Duan
Zhengyu Liu
Shengbo Eben Li
Qi Sun
Zhenzhong Jia
B. Cheng
15
64
0
26 Nov 2019
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
21
131
0
03 Nov 2019
Global Convergence of Gradient Descent for Deep Linear Residual Networks
Lei Wu
Qingcan Wang
Chao Ma
ODL
AI4CE
28
22
0
02 Nov 2019
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
22
35
0
28 Oct 2019
Active Learning for Graph Neural Networks via Node Feature Propagation
Yuexin Wu
Yichong Xu
Aarti Singh
Yiming Yang
A. Dubrawski
GNN
AI4CE
48
63
0
16 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Algorithm-Dependent Generalization Bounds for Overparameterized Deep Residual Networks
Spencer Frei
Yuan Cao
Quanquan Gu
ODL
9
31
0
07 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
29
113
0
25 Sep 2019
Sample Efficient Policy Gradient Methods with Recursive Variance Reduction
Pan Xu
F. Gao
Quanquan Gu
31
83
0
18 Sep 2019
Stochastic AUC Maximization with Deep Neural Networks
Mingrui Liu
Zhuoning Yuan
Yiming Ying
Tianbao Yang
17
103
0
28 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
60
626
0
14 Aug 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Associated Learning: Decomposing End-to-end Backpropagation based on Auto-encoders and Target Propagation
Yu-Wei Kao
Hung-Hsuan Chen
BDL
20
5
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
Parameterized Structured Pruning for Deep Neural Networks
Günther Schindler
Wolfgang Roth
Franz Pernkopf
Holger Froening
24
6
0
12 Jun 2019
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
Ari S. Morcos
Haonan Yu
Michela Paganini
Yuandong Tian
16
228
0
06 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
31
383
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
24
97
0
25 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
50
0
19 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
905
0
26 Apr 2019
DSTP-RNN: a dual-stage two-phase attention-based recurrent neural networks for long-term and multivariate time series prediction
Yeqi Liu
Chuanyang Gong
Ling Yang
Yingyi Chen
AI4TS
19
305
0
16 Apr 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
38
136
0
10 Apr 2019
Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections
E. Weinan
Chao Ma
Qingcan Wang
Lei Wu
MLT
37
22
0
10 Apr 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
24
18
0
07 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
19
101
0
02 Apr 2019
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
28
181
0
01 Apr 2019
Previous
1
2
3
4
5
6
7
8
Next