Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1811.04376
Cited By
Explaining Deep Learning Models using Causal Inference
11 November 2018
Tanmayee Narendra
A. Sankaran
Deepak Vijaykeerthy
Senthil Mani
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explaining Deep Learning Models using Causal Inference"
27 / 27 papers shown
Title
ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Paritosh Parmar
Eric Peh
Basura Fernando
VGen
LRM
60
0
0
28 Aug 2025
Causality-Driven Neural Network Repair: Challenges and Opportunities
Fatemeh Vares
Brittany Johnson
AAML
157
1
0
24 Apr 2025
CausAdv: A Causal-based Framework for Detecting Adversarial Examples
Hichem Debbi
CML
AAML
169
1
0
29 Oct 2024
Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations
Davide Coppola
Hwee Kuan Lee
AAML
147
1
0
31 May 2024
Causality Analysis for Evaluating the Security of Large Language Models
Wei Zhao
Zhe Li
Junfeng Sun
147
14
0
13 Dec 2023
SUNY: A Visual Interpretation Framework for Convolutional Neural Networks from a Necessary and Sufficient Perspective
Xiwei Xuan
Ziquan Deng
Hsuan-Tien Lin
Z. Kong
Kwan-Liu Ma
AAML
FAtt
231
5
0
01 Mar 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
258
15
0
07 Nov 2022
Causality-based Neural Network Repair
International Conference on Software Engineering (ICSE), 2022
Bing-Jie Sun
Jun Sun
Hong Long Pham
Jie Shi
109
97
0
20 Apr 2022
Evaluation Methods and Measures for Causal Learning Algorithms
IEEE Transactions on Artificial Intelligence (IEEE TAI), 2022
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
204
69
0
07 Feb 2022
On Causal Inference for Data-free Structured Pruning
Martin Ferianc
A. Sankaran
Olivier Mastropietro
Ehsan Saboori
Quentin Cappart
CML
79
2
0
19 Dec 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
AAAI Conference on Artificial Intelligence (AAAI), 2021
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
177
10
0
09 Sep 2021
Causal Learning for Socially Responsible AI
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
248
14
0
25 Apr 2021
Generative Causal Explanations for Graph Neural Networks
International Conference on Machine Learning (ICML), 2021
Wanyu Lin
Hao Lan
Baochun Li
CML
166
203
0
14 Apr 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
International Journal of Computer Vision (IJCV), 2021
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
400
203
0
13 Jan 2021
Socially Responsible AI Algorithms: Issues, Purposes, and Challenges
Journal of Artificial Intelligence Research (JAIR), 2021
Lu Cheng
Kush R. Varshney
Huan Liu
FaML
383
182
0
01 Jan 2021
Examining the causal structures of deep neural networks using information theory
Simon Mattsson
Eric J. Michaud
Erik P. Hoel
122
10
0
26 Oct 2020
Explainable Deep Learning for Uncovering Actionable Scientific Insights for Materials Discovery and Design
Shusen Liu
B. Kailkhura
Jize Zhang
A. Hiszpanski
Emily Robertson
Donald Loveland
T. Y. Han
98
2
0
16 Jul 2020
Actionable Attribution Maps for Scientific Machine Learning
Shusen Liu
B. Kailkhura
Jize Zhang
A. Hiszpanski
Emily Robertson
Donald Loveland
T. Y. Han
79
1
0
30 Jun 2020
Causal Explanations of Image Misclassifications
Yan Min
Miles K. Bennett
CML
80
1
0
28 Jun 2020
Causality Learning: A New Perspective for Interpretable Machine Learning
Guandong Xu
Tri Dung Duong
Cunliang Kong
S. Liu
Xianzhi Wang
XAI
OOD
CML
170
61
0
27 Jun 2020
Generative causal explanations of black-box classifiers
Neural Information Processing Systems (NeurIPS), 2020
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
213
76
0
24 Jun 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Helen Zhou
AAML
154
8
0
23 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
SIGKDD Explorations (SIGKDD Explor.), 2020
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
228
240
0
09 Mar 2020
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Helen Zhou
XAI
ELM
145
76
0
16 Jul 2019
Generative Counterfactual Introspection for Explainable Deep Learning
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2019
Shusen Liu
B. Kailkhura
Donald Loveland
Yong Han
203
94
0
06 Jul 2019
HARK Side of Deep Learning -- From Grad Student Descent to Automated Machine Learning
O. Gencoglu
M. Gils
E. Guldogan
Chamin Morikawa
Mehmet Süzen
M. Gruber
J. Leinonen
H. Huttunen
141
38
0
16 Apr 2019
When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks
International Conference on Information Photonics (ICIP), 2019
Chao-Han Huck Yang
Yi-Chieh Liu
Pin-Yu Chen
Xiaoli Ma
Y. Tsai
BDL
AAML
CML
169
21
0
09 Feb 2019
1