ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.06533
  4. Cited By
Learning to Predict the Cosmological Structure Formation

Learning to Predict the Cosmological Structure Formation

15 November 2018
Siyu He
Yin Li
Yu Feng
S. Ho
Siamak Ravanbakhsh
Wei Chen
Barnabás Póczós
ArXivPDFHTML

Papers citing "Learning to Predict the Cosmological Structure Formation"

48 / 48 papers shown
Title
Machine Learning Aided Modeling of Granular Materials: A Review
Machine Learning Aided Modeling of Granular Materials: A Review
Mengqi Wang
Krishna Kumar
Y. T. Feng
Tongming Qu
Min Wang
AI4CE
31
4
0
18 Oct 2024
Accelerating Giant Impact Simulations with Machine Learning
Accelerating Giant Impact Simulations with Machine Learning
Caleb Lammers
M. Cranmer
Sam Hadden
Shirley Ho
Norman Murray
Daniel Tamayo
13
0
0
16 Aug 2024
How to Do Machine Learning with Small Data? -- A Review from an
  Industrial Perspective
How to Do Machine Learning with Small Data? -- A Review from an Industrial Perspective
I. Kraljevski
Yong Chul Ju
Dmitrij Ivanov
Constanze Tschope
M. Wolff
AI4CE
30
4
0
13 Nov 2023
Multiple Physics Pretraining for Physical Surrogate Models
Multiple Physics Pretraining for Physical Surrogate Models
Michael McCabe
Bruno Régaldo-Saint Blancard
Liam Parker
Ruben Ohana
M. Cranmer
...
Francois Lanusse
Mariel Pettee
Tiberiu Teşileanu
Kyunghyun Cho
Shirley Ho
PINN
AI4CE
40
53
0
04 Oct 2023
Renormalizing Diffusion Models
Renormalizing Diffusion Models
Jordan S. Cotler
Semon Rezchikov
DiffM
AI4CE
37
11
0
23 Aug 2023
Introduction to Latent Variable Energy-Based Models: A Path Towards
  Autonomous Machine Intelligence
Introduction to Latent Variable Energy-Based Models: A Path Towards Autonomous Machine Intelligence
Anna Dawid
Yann LeCun
DRL
29
30
0
05 Jun 2023
Predicting the Initial Conditions of the Universe using a Deterministic
  Neural Network
Predicting the Initial Conditions of the Universe using a Deterministic Neural Network
Vaibhav Jindal
Albert Liang
Aarti Singh
Shirley Ho
Drew Jamieson
AI4CE
20
2
0
23 Mar 2023
Non-separable Covariance Kernels for Spatiotemporal Gaussian Processes
  based on a Hybrid Spectral Method and the Harmonic Oscillator
Non-separable Covariance Kernels for Spatiotemporal Gaussian Processes based on a Hybrid Spectral Method and the Harmonic Oscillator
D. Hristopulos
19
4
0
19 Feb 2023
Learning Modular Simulations for Homogeneous Systems
Learning Modular Simulations for Homogeneous Systems
Jayesh K. Gupta
Sai H. Vemprala
Ashish Kapoor
25
6
0
28 Oct 2022
Galaxy Spin Classification I: Z-wise vs S-wise Spirals With Chirality
  Equivariant Residual Network
Galaxy Spin Classification I: Z-wise vs S-wise Spirals With Chirality Equivariant Residual Network
He Jia
Hong-Ming Zhu
U. Pen
22
5
0
09 Oct 2022
Hybrid Physical-Neural ODEs for Fast N-body Simulations
Hybrid Physical-Neural ODEs for Fast N-body Simulations
Denise Lanzieri
F. Lanusse
Jean-Luc Starck
11
7
0
12 Jul 2022
Field Level Neural Network Emulator for Cosmological N-body Simulations
Field Level Neural Network Emulator for Cosmological N-body Simulations
Drew Jamieson
Yin Li
Renan Alves de Oliveira
F. Villaescusa-Navarro
S. Ho
D. Spergel
18
27
0
09 Jun 2022
Simple lessons from complex learning: what a neural network model learns
  about cosmic structure formation
Simple lessons from complex learning: what a neural network model learns about cosmic structure formation
Drew Jamieson
Yin Li
Siyu He
F. Villaescusa-Navarro
S. Ho
R. A. Oliveira
D. Spergel
19
4
0
09 Jun 2022
Dimensionless machine learning: Imposing exact units equivariance
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
23
26
0
02 Apr 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
29
12
0
15 Mar 2022
Simulating Liquids with Graph Networks
Simulating Liquids with Graph Networks
Jonathan Klimesch
Philipp Holl
Nils Thuerey
GNN
AI4CE
27
8
0
14 Mar 2022
Rediscovering orbital mechanics with machine learning
Rediscovering orbital mechanics with machine learning
Pablo Lemos
N. Jeffrey
M. Cranmer
S. Ho
Peter W. Battaglia
PINN
AI4CE
22
87
0
04 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
78
43
0
01 Feb 2022
Augmenting astrophysical scaling relations with machine learning:
  application to reducing the Sunyaev-Zeldovich flux-mass scatter
Augmenting astrophysical scaling relations with machine learning: application to reducing the Sunyaev-Zeldovich flux-mass scatter
D. Wadekar
L. Thiele
F. Villaescusa-Navarro
J. Hill
M. Cranmer
D. Spergel
N. Battaglia
D. Anglés-Alcázar
L. Hernquist
S. Ho
43
12
0
04 Jan 2022
The CAMELS project: public data release
The CAMELS project: public data release
F. Villaescusa-Navarro
S. Genel
D. Anglés-Alcázar
L. A. Perez
Pablo Villanueva-Domingo
...
M. Viel
Yin Li
V. Iršič
K. Kraljic
M. Vogelsberger
12
32
0
04 Jan 2022
Learning from learning machines: a new generation of AI technology to
  meet the needs of science
Learning from learning machines: a new generation of AI technology to meet the needs of science
L. Pion-Tonachini
K. Bouchard
Héctor García Martín
S. Peisert
W. B. Holtz
...
Rick L. Stevens
Mark Anderson
Ken Kreutz-Delgado
Michael W. Mahoney
James B. Brown
38
7
0
27 Nov 2021
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
36
40
0
15 Nov 2021
Super-resolving Dark Matter Halos using Generative Deep Learning
Super-resolving Dark Matter Halos using Generative Deep Learning
David Schaurecker
Yin Li
J. Tinker
S. Ho
Alexandre Réfrégier
GAN
AI4CE
22
6
0
11 Nov 2021
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Likelihood-Free Inference in State-Space Models with Unknown Dynamics
Alexander Aushev
Thong Tran
Henri Pesonen
Andrew Howes
Samuel Kaski
28
1
0
02 Nov 2021
The CAMELS Multifield Dataset: Learning the Universe's Fundamental
  Parameters with Artificial Intelligence
The CAMELS Multifield Dataset: Learning the Universe's Fundamental Parameters with Artificial Intelligence
F. Villaescusa-Navarro
S. Genel
D. Anglés-Alcázar
L. Thiele
R. Davé
...
Luis Fernando Machado Poletti Valle
L. A. Perez
D. Nagai
N. Battaglia
M. Vogelsberger
27
47
0
22 Sep 2021
AI-assisted super-resolution cosmological simulations II: Halo
  substructures, velocities and higher order statistics
AI-assisted super-resolution cosmological simulations II: Halo substructures, velocities and higher order statistics
Y. Ni
Yin Li
Patrick Lachance
R. Croft
T. Di Matteo
Simeon Bird
Yu Feng
16
16
0
03 May 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OOD
CML
AI4CE
43
318
0
22 Feb 2021
Deep learning insights into cosmological structure formation
Deep learning insights into cosmological structure formation
Luisa Lucie-Smith
H. Peiris
A. Pontzen
Brian D. Nord
Jeyan Thiyagalingam
24
6
0
20 Nov 2020
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
NeuralSim: Augmenting Differentiable Simulators with Neural Networks
Eric Heiden
David Millard
Erwin Coumans
Yizhou Sheng
Gaurav Sukhatme
24
137
0
09 Nov 2020
deep21: a Deep Learning Method for 21cm Foreground Removal
deep21: a Deep Learning Method for 21cm Foreground Removal
T. Lucas Makinen
Lachlan Lancaster
F. Villaescusa-Navarro
Peter Melchior
S. Ho
Laurence Perreault Levasseur
D. Spergel
3DPC
30
28
0
29 Oct 2020
AI-assisted super-resolution cosmological simulations
AI-assisted super-resolution cosmological simulations
Yin Li
Y. Ni
R. Croft
T. Di Matteo
Simeon Bird
Yu Feng
18
46
0
13 Oct 2020
Learning effective physical laws for generating cosmological
  hydrodynamics with Lagrangian Deep Learning
Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian Deep Learning
B. Dai
U. Seljak
PINN
AI4CE
17
28
0
06 Oct 2020
Quasar Detection using Linear Support Vector Machine with Learning From
  Mistakes Methodology
Quasar Detection using Linear Support Vector Machine with Learning From Mistakes Methodology
A. Herle
Janamejaya Channegowda
Dinakar Prabhu
14
2
0
01 Oct 2020
Augmenting Differentiable Simulators with Neural Networks to Close the
  Sim2Real Gap
Augmenting Differentiable Simulators with Neural Networks to Close the Sim2Real Gap
Eric Heiden
David Millard
Erwin Coumans
Gaurav Sukhatme
19
21
0
12 Jul 2020
Emulation of cosmological mass maps with conditional generative
  adversarial networks
Emulation of cosmological mass maps with conditional generative adversarial networks
Nathanael Perraudin
Sandro Marcon
Aurelien Lucchi
T. Kacprzak
GAN
8
11
0
17 Apr 2020
Inpainting via Generative Adversarial Networks for CMB data analysis
Inpainting via Generative Adversarial Networks for CMB data analysis
A. V. Sadr
F. Farsian
16
3
0
08 Apr 2020
Baryon acoustic oscillations reconstruction using convolutional neural
  networks
Baryon acoustic oscillations reconstruction using convolutional neural networks
Tianxiang Mao
Jie-Shuang Wang
Baojiu Li
Yan-Chuan Cai
B. Falck
M. Neyrinck
A. Szalay
17
12
0
24 Feb 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
53
1,053
0
21 Feb 2020
Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
  Body Dynamics
Automatic Differentiation and Continuous Sensitivity Analysis of Rigid Body Dynamics
David Millard
Eric Heiden
Shubham Agrawal
Gaurav Sukhatme
AI4CE
27
13
0
22 Jan 2020
Solving inverse-PDE problems with physics-aware neural networks
Solving inverse-PDE problems with physics-aware neural networks
Samira Pakravan
Pouria A. Mistani
M. Aragon-Calvo
Frédéric Gibou
AI4CE
28
50
0
10 Jan 2020
Parameters Estimation for the Cosmic Microwave Background with Bayesian
  Neural Networks
Parameters Estimation for the Cosmic Microwave Background with Bayesian Neural Networks
Héctor J. Hortúa
Riccardo Volpi
D. Marinelli
Luigi Malagò
BDL
13
22
0
19 Nov 2019
Learning neutrino effects in Cosmology with Convolutional Neural
  Networks
Learning neutrino effects in Cosmology with Convolutional Neural Networks
E. Giusarma
M. Reyes
F. Villaescusa-Navarro
Siyu He
S. Ho
C. Hahn
14
14
0
09 Oct 2019
Cosmological N-body simulations: a challenge for scalable generative
  models
Cosmological N-body simulations: a challenge for scalable generative models
Nathanael Perraudin
Ankit Srivastava
Aurelien Lucchi
T. Kacprzak
Thomas Hofmann
Alexandre Réfrégier
6
32
0
15 Aug 2019
HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks
HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks
Juan Zamudio-Fernandez
Atakan Okan
F. Villaescusa-Navarro
S. Bilaloglu
Asena Derin Cengiz
Siyu He
Laurence Perreault Levasseur
S. Ho
GAN
12
20
0
29 Apr 2019
Painting with baryons: augmenting N-body simulations with gas using deep
  generative models
Painting with baryons: augmenting N-body simulations with gas using deep generative models
T. Tröster
C. Ferguson
J. Harnois-Déraps
I. McCarthy
AI4CE
21
49
0
28 Mar 2019
From Dark Matter to Galaxies with Convolutional Networks
From Dark Matter to Galaxies with Convolutional Networks
Xinyue Zhang
Yanfang Wang
Wei Zhang
Yueqiu Sun
Siyu He
Gabriella Contardo
F. Villaescusa-Navarro
S. Ho
OOD
27
43
0
15 Feb 2019
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
439
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
283
1,401
0
01 Dec 2016
1