Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.09716
Cited By
Robustness via curvature regularization, and vice versa
23 November 2018
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness via curvature regularization, and vice versa"
50 / 62 papers shown
Title
Variational autoencoders with latent high-dimensional steady geometric flows for dynamics
Andrew Gracyk
DRL
63
0
0
03 Jan 2025
SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing
Changchang Yin
Ruoqi Liu
Bingsheng Yao
Dongdong Zhang
Jeffrey Caterino
Ping Zhang
27
42
0
24 Jul 2024
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
34
0
0
07 Jun 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
61
8
0
15 Mar 2024
Doubly Perturbed Task Free Continual Learning
Byung Hyun Lee
Min-hwan Oh
Se Young Chun
13
3
0
20 Dec 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
René Vidal
26
8
0
28 Sep 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
37
49
0
18 May 2023
Boosting Verified Training for Robust Image Classifications via Abstraction
Zhaodi Zhang
Zhiyi Xue
Yang Chen
Si Liu
Yueling Zhang
J. Liu
Min Zhang
33
4
0
21 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
36
34
0
19 Mar 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
48
18
0
22 Feb 2023
GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks
Salah Ghamizi
Jingfeng Zhang
Maxime Cordy
Mike Papadakis
Masashi Sugiyama
Yves Le Traon
AAML
17
2
0
06 Feb 2023
Learning PDE Solution Operator for Continuous Modeling of Time-Series
Yesom Park
Jaemoo Choi
Changyeon Yoon
Changhoon Song
Myung-joo Kang
AI4TS
AI4CE
20
3
0
02 Feb 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
30
18
0
29 Jan 2023
On the Lipschitz Constant of Deep Networks and Double Descent
Matteo Gamba
Hossein Azizpour
Marten Bjorkman
21
7
0
28 Jan 2023
On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it
Camilo A. Garcia Trillos
Nicolas García Trillos
16
5
0
09 Jan 2023
Towards More Robust Interpretation via Local Gradient Alignment
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
25
5
0
29 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
59
10
0
21 Sep 2022
A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective
Chanwoo Park
Sangdoo Yun
Sanghyuk Chun
AAML
18
32
0
21 Aug 2022
How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts
Haotao Wang
Junyuan Hong
Jiayu Zhou
Zhangyang Wang
OOD
53
11
0
04 Jul 2022
Removing Batch Normalization Boosts Adversarial Training
Haotao Wang
Aston Zhang
Shuai Zheng
Xingjian Shi
Mu Li
Zhangyang Wang
32
41
0
04 Jul 2022
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
24
12
0
13 Jun 2022
Fooling Explanations in Text Classifiers
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
AAML
22
20
0
07 Jun 2022
Anti-Adversarially Manipulated Attributions for Weakly Supervised Semantic Segmentation and Object Localization
Jungbeom Lee
Eunji Kim
J. Mok
Sung-Hoon Yoon
WSOL
40
29
0
11 Apr 2022
The Dark Side: Security Concerns in Machine Learning for EDA
Zhiyao Xie
Jingyu Pan
Chen-Chia Chang
Yiran Chen
6
4
0
20 Mar 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
77
46
0
20 Feb 2022
Eikonal depth: an optimal control approach to statistical depths
M. Molina-Fructuoso
Ryan W. Murray
MDE
22
4
0
14 Jan 2022
Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann
Kyle Sargent
Lu Jiang
Ramin Zabih
Huiwen Chang
Ce Liu
Dilip Krishnan
Deqing Sun
ViT
20
56
0
30 Nov 2021
MedRDF: A Robust and Retrain-Less Diagnostic Framework for Medical Pretrained Models Against Adversarial Attack
Mengting Xu
Tao Zhang
Daoqiang Zhang
AAML
MedIm
13
23
0
29 Nov 2021
The Geometry of Adversarial Training in Binary Classification
Leon Bungert
Nicolas García Trillos
Ryan W. Murray
AAML
22
22
0
26 Nov 2021
Sharpness-aware Quantization for Deep Neural Networks
Jing Liu
Jianfei Cai
Bohan Zhuang
MQ
27
24
0
24 Nov 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
36
56
0
24 Nov 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Global Vision Transformer Pruning with Hessian-Aware Saliency
Huanrui Yang
Hongxu Yin
Maying Shen
Pavlo Molchanov
Hai Helen Li
Jan Kautz
ViT
30
38
0
10 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
37
10
0
13 Sep 2021
Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models
T. Klein
Moin Nabi
ReLM
LRM
27
8
0
10 Sep 2021
Why Adversarial Reprogramming Works, When It Fails, and How to Tell the Difference
Yang Zheng
Xiaoyi Feng
Zhaoqiang Xia
Xiaoyue Jiang
Ambra Demontis
Maura Pintor
Battista Biggio
Fabio Roli
AAML
19
21
0
26 Aug 2021
Concurrent Adversarial Learning for Large-Batch Training
Yong Liu
Xiangning Chen
Minhao Cheng
Cho-Jui Hsieh
Yang You
ODL
28
13
0
01 Jun 2021
A single gradient step finds adversarial examples on random two-layers neural networks
Sébastien Bubeck
Yeshwanth Cherapanamjeri
Gauthier Gidel
Rémi Tachet des Combes
MLT
26
27
0
08 Apr 2021
Collective Decision of One-vs-Rest Networks for Open Set Recognition
Jaeyeon Jang
Chang Ouk Kim
27
25
0
18 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
23
1
0
04 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
15
29
0
13 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
11
11
0
22 Dec 2020
On the human-recognizability phenomenon of adversarially trained deep image classifiers
Jonathan W. Helland
Nathan M. VanHoudnos
AAML
22
4
0
18 Dec 2020
Adversarial Classification: Necessary conditions and geometric flows
Nicolas García Trillos
Ryan W. Murray
AAML
17
19
0
21 Nov 2020
1
2
Next