ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.06243
  4. Cited By
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities

Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities

15 December 2018
Y. Lee
Zhao Song
Santosh Vempala
ArXivPDFHTML

Papers citing "Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities"

8 / 8 papers shown
Title
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
32
12
0
20 Nov 2022
When is the Convergence Time of Langevin Algorithms Dimension
  Independent? A Composite Optimization Viewpoint
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi Ma
Tong Zhang
37
16
0
05 Oct 2021
Complexity of zigzag sampling algorithm for strongly log-concave
  distributions
Complexity of zigzag sampling algorithm for strongly log-concave distributions
Jianfeng Lu
Lihan Wang
18
6
0
21 Dec 2020
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
  Hamiltonian Monte Carlo
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo
Y. Lee
Ruoqi Shen
Kevin Tian
25
37
0
10 Feb 2020
Efficient Symmetric Norm Regression via Linear Sketching
Efficient Symmetric Norm Regression via Linear Sketching
Zhao Song
Ruosong Wang
Lin F. Yang
Hongyang R. Zhang
Peilin Zhong
20
22
0
04 Oct 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
13
43
0
30 May 2019
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly
  Logconcave Distributions
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
Zongchen Chen
Santosh Vempala
11
64
0
07 May 2019
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
58
231
0
11 Jul 2016
1