ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.07544
  4. Cited By
Information-Directed Exploration for Deep Reinforcement Learning

Information-Directed Exploration for Deep Reinforcement Learning

18 December 2018
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
ArXivPDFHTML

Papers citing "Information-Directed Exploration for Deep Reinforcement Learning"

16 / 16 papers shown
Title
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Moritz A. Zanger
Pascal R. van der Vaart
Wendelin Bohmer
M. Spaan
UQCV
BDL
140
0
0
14 Mar 2025
Learning to Assist Humans without Inferring Rewards
Learning to Assist Humans without Inferring Rewards
Vivek Myers
Evan Ellis
Sergey Levine
Benjamin Eysenbach
Anca Dragan
35
2
0
17 Jan 2025
Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
Reinforcement Learning with Intrinsically Motivated Feedback Graph for Lost-sales Inventory Control
Zifan Liu
Xinran Li
Shibo Chen
Gen Li
Jiashuo Jiang
Jun Zhang
33
0
0
26 Jun 2024
Diverse Projection Ensembles for Distributional Reinforcement Learning
Diverse Projection Ensembles for Distributional Reinforcement Learning
Moritz A. Zanger
Wendelin Bohmer
M. Spaan
20
4
0
12 Jun 2023
Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent
  Reinforcement Learning
Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent Reinforcement Learning
Ji-Yun Oh
Joonkee Kim
Minchan Jeong
Se-Young Yun
30
1
0
03 Mar 2023
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses
D. Tiapkin
Denis Belomestny
Eric Moulines
A. Naumov
S. Samsonov
Yunhao Tang
Michal Valko
Pierre Menard
19
16
0
16 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
14
19
0
04 May 2022
Exploration in Deep Reinforcement Learning: A Survey
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
23
322
0
02 May 2022
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement
  Learning
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning
Chenjia Bai
Lingxiao Wang
Zhuoran Yang
Zhihong Deng
Animesh Garg
Peng Liu
Zhaoran Wang
OffRL
26
132
0
23 Feb 2022
The Value of Information When Deciding What to Learn
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
16
12
0
26 Oct 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to
  Multiagent Domain
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
30
92
0
14 Sep 2021
Disentangling What and Where for 3D Object-Centric Representations
  Through Active Inference
Disentangling What and Where for 3D Object-Centric Representations Through Active Inference
Toon Van de Maele
Tim Verbelen
Ozan Çatal
Bart Dhoedt
OCL
23
5
0
26 Aug 2021
Reinforcement Learning, Bit by Bit
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
19
70
0
06 Mar 2021
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy
  Critics
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
Denis Steckelmacher
Hélène Plisnier
D. Roijers
A. Nowé
OffRL
13
17
0
11 Mar 2019
The Potential of the Return Distribution for Exploration in RL
The Potential of the Return Distribution for Exploration in RL
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
11
9
0
11 Jun 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1