Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07956
Cited By
On Lazy Training in Differentiable Programming
19 December 2018
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Lazy Training in Differentiable Programming"
50 / 227 papers shown
Title
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
31
4
0
20 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
Infinitely wide limits for deep Stable neural networks: sub-linear, linear and super-linear activation functions
Alberto Bordino
Stefano Favaro
S. Fortini
32
7
0
08 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
38
29
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
26
1
0
06 Apr 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
31
35
0
02 Apr 2023
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
Xuchen You
Shouvanik Chakrabarti
Boyang Chen
Xiaodi Wu
34
10
0
26 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
46
0
0
24 Mar 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Tao Luo
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
49
8
0
12 Mar 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu (Allen) Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
32
29
0
03 Mar 2023
The Ladder in Chaos: A Simple and Effective Improvement to General DRL Algorithms by Policy Path Trimming and Boosting
Hongyao Tang
Hao Fei
Jianye Hao
23
1
0
02 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
37
16
0
20 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
How to prepare your task head for finetuning
Yi Ren
Shangmin Guo
Wonho Bae
Danica J. Sutherland
24
14
0
11 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
40
10
0
03 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
42
5
0
02 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
64
2
0
02 Feb 2023
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Antonio Sclocchi
Mario Geiger
M. Wyart
40
6
0
31 Jan 2023
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
36
61
0
26 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum Machine Learning
Massimiliano Incudini
Michele Grossi
Antonio Mandarino
S. Vallecorsa
Alessandra Di Pierro
David Windridge
33
6
0
22 Dec 2022
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
38
36
0
14 Dec 2022
Selective Amnesia: On Efficient, High-Fidelity and Blind Suppression of Backdoor Effects in Trojaned Machine Learning Models
Rui Zhu
Di Tang
Siyuan Tang
Xiaofeng Wang
Haixu Tang
AAML
FedML
37
13
0
09 Dec 2022
Statistical Physics of Deep Neural Networks: Initialization toward Optimal Channels
Kangyu Weng
Aohua Cheng
Ziyang Zhang
Pei Sun
Yang Tian
53
2
0
04 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
Why Neural Networks Work
Sayan Mukherjee
Bernardo A. Huberman
13
2
0
26 Nov 2022
Linear Interpolation In Parameter Space is Good Enough for Fine-Tuned Language Models
Mark Rofin
Nikita Balagansky
Daniil Gavrilov
MoMe
KELM
38
5
0
22 Nov 2022
Do highly over-parameterized neural networks generalize since bad solutions are rare?
Julius Martinetz
T. Martinetz
30
1
0
07 Nov 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
27
5
0
28 Oct 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
170
68
0
27 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
34
13
0
21 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
26
10
0
21 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
44
17
0
11 Oct 2022
SGD with Large Step Sizes Learns Sparse Features
Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
45
56
0
11 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
58
16
0
10 Oct 2022
Continual task learning in natural and artificial agents
Timo Flesch
Andrew M. Saxe
Christopher Summerfield
CLL
43
24
0
10 Oct 2022
On skip connections and normalisation layers in deep optimisation
L. MacDonald
Jack Valmadre
Hemanth Saratchandran
Simon Lucey
ODL
19
1
0
10 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
31
5
0
19 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
52
6
0
17 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Differentiable Programming for Earth System Modeling
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
21
16
0
29 Aug 2022
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Z. Li
Zixuan Wang
Jian Li
19
44
0
26 Jul 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
30
34
0
21 Jul 2022
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
42
27
0
08 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
22
114
0
30 Jun 2022
Previous
1
2
3
4
5
Next