Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.07956
Cited By
On Lazy Training in Differentiable Programming
19 December 2018
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Lazy Training in Differentiable Programming"
50 / 227 papers shown
Title
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
42
23
0
24 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
33
31
0
20 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
40
70
0
14 Jun 2022
Overcoming the Spectral Bias of Neural Value Approximation
Ge Yang
Anurag Ajay
Pulkit Agrawal
34
25
0
09 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
32
41
0
07 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
24
58
0
02 Jun 2022
Analyzing Tree Architectures in Ensembles via Neural Tangent Kernel
Ryuichi Kanoh
M. Sugiyama
31
2
0
25 May 2022
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
Shutong Wu
Sizhe Chen
Cihang Xie
X. Huang
AAML
45
27
0
24 May 2022
Transition to Linearity of General Neural Networks with Directed Acyclic Graph Architecture
Libin Zhu
Chaoyue Liu
M. Belkin
GNN
AI4CE
23
4
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
78
0
19 May 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
59
23
0
18 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
42
121
0
03 May 2022
Beyond the Quadratic Approximation: the Multiscale Structure of Neural Network Loss Landscapes
Chao Ma
D. Kunin
Lei Wu
Lexing Ying
25
27
0
24 Apr 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
21
20
0
30 Mar 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
35
12
0
28 Mar 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
32
13
0
22 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
On the Benefits of Large Learning Rates for Kernel Methods
Gaspard Beugnot
Julien Mairal
Alessandro Rudi
19
11
0
28 Feb 2022
The Spectral Bias of Polynomial Neural Networks
Moulik Choraria
L. Dadi
Grigorios G. Chrysos
Julien Mairal
V. Cevher
24
18
0
27 Feb 2022
A Geometric Understanding of Natural Gradient
Qinxun Bai
S. Rosenberg
Wei Xu
21
2
0
13 Feb 2022
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Maksim Velikanov
Dmitry Yarotsky
9
6
0
02 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
13
31
0
01 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
29
3
0
30 Jan 2022
Interplay between depth of neural networks and locality of target functions
Takashi Mori
Masakuni Ueda
25
0
0
28 Jan 2022
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks
Benjamin Bowman
Guido Montúfar
28
11
0
12 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
35
51
0
31 Dec 2021
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
Early Stopping for Deep Image Prior
Hengkang Wang
Taihui Li
Zhong Zhuang
Tiancong Chen
Hengyue Liang
Ju Sun
26
63
0
11 Dec 2021
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning
Yuege Xie
Bobby Shi
Hayden Schaeffer
Rachel A. Ward
81
9
0
07 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Understanding Layer-wise Contributions in Deep Neural Networks through Spectral Analysis
Yatin Dandi
Arthur Jacot
FAtt
26
4
0
06 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
41
13
0
03 Nov 2021
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
30
31
0
02 Nov 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
26
75
0
29 Oct 2021
Does the Data Induce Capacity Control in Deep Learning?
Rubing Yang
Jialin Mao
Pratik Chaudhari
33
15
0
27 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
50
6
0
12 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
29
19
0
20 Sep 2021
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
Zhichao Wang
Yizhe Zhu
35
18
0
20 Sep 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
34
71
0
06 Sep 2021
Dash: Semi-Supervised Learning with Dynamic Thresholding
Yi Tian Xu
Lei Shang
Jinxing Ye
Qi Qian
Yu-Feng Li
Baigui Sun
Hao Li
R. L. Jin
38
218
0
01 Sep 2021
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
47
38
0
25 Aug 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
27
23
0
09 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
30
31
0
16 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Previous
1
2
3
4
5
Next