Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1812.11832
Cited By
Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning
31 December 2018
M. Bergomi
Patrizio Frosini
D. Giorgi
Nicola Quercioli
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning"
22 / 22 papers shown
Title
A novel approach to graph distinction through GENEOs and permutants
Giovanni Bocchi
Massimo Ferri
Patrizio Frosini
33
2
0
12 Jun 2024
A Class of Topological Pseudodistances for Fast Comparison of Persistence Diagrams
Rolando Kindelan Nunez
Mircea Petrache
Mauricio Cerda
N. Hitschfeld-Kahler
27
1
0
22 Feb 2024
Achieving Constraints in Neural Networks: A Stochastic Augmented Lagrangian Approach
Diogo Mateus Lavado
Cláudia Soares
Alessandra Micheletti
24
1
0
25 Oct 2023
A Topological Machine Learning Pipeline for Classification
Francesco Conti
Davide Moroni
M. A. Pascali
17
11
0
26 Sep 2023
A topological model for partial equivariance in deep learning and data analysis
L. Ferrari
Patrizio Frosini
Nicola Quercioli
Francesca Tombari
24
2
0
25 Aug 2023
Low-Resource White-Box Semantic Segmentation of Supporting Towers on 3D Point Clouds via Signature Shape Identification
Diogo Mateus Lavado
Cláudia Soares
Alessandra Micheletti
Giovanni Bocchi
Alex Coronati
Manuel F. Silva
Patrizio Frosini
3DPC
30
2
0
13 Jun 2023
Persistence-based operators in machine learning
M. Bergomi
M. Ferri
A. Mella
Pietro Vertechi
13
0
0
28 Dec 2022
Topological structure of complex predictions
Meng Liu
T. Dey
D. Gleich
38
3
0
28 Jul 2022
Betti numbers of attention graphs is all you really need
Laida Kushnareva
D. Piontkovski
Irina Piontkovskaya
GNN
19
2
0
05 Jul 2022
Generalized Permutants and Graph GENEOs
Faraz Ahmad
M. Ferri
Patrizio Frosini
40
4
0
29 Jun 2022
Machines of finite depth: towards a formalization of neural networks
Pietro Vertechi
M. Bergomi
PINN
24
2
0
27 Apr 2022
GENEOnet: A new machine learning paradigm based on Group Equivariant Non-Expansive Operators. An application to protein pocket detection
Giovanni Bocchi
Patrizio Frosini
Alessandra Micheletti
A. Pedretti
Carmen Gratteri
Filippo Lunghini
A. Beccari
Carmine Talarico
11
7
0
31 Jan 2022
Leveraging The Topological Consistencies of Learning in Deep Neural Networks
Stuart Synakowski
Fabian Benitez-Quiroz
Aleix M. Martinez
6
0
0
30 Nov 2021
Scarce Data Driven Deep Learning of Drones via Generalized Data Distribution Space
Chen Li
S. Sun
Zhuangkun Wei
Antonios Tsourdos
Weisi Guo
30
5
0
18 Aug 2021
Geometric Deep Learning and Equivariant Neural Networks
Jan E. Gerken
J. Aronsson
Oscar Carlsson
Hampus Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
MLT
13
66
0
28 May 2021
Model-centric Data Manifold: the Data Through the Eyes of the Model
Luca Grementieri
R. Fioresi
53
9
0
26 Apr 2021
On the geometric and Riemannian structure of the spaces of group equivariant non-expansive operators
Pasquale Cascarano
Patrizio Frosini
Nicola Quercioli
A. Saki
22
3
0
03 Mar 2021
Towards glass-box CNNs
Manaswini Piduguralla
Jignesh S. Bhatt
27
3
0
11 Jan 2021
On the finite representation of group equivariant operators via permutant measures
Giovanni Bocchi
S. Botteghi
Martina Brasini
Patrizio Frosini
Nicola Quercioli
10
9
0
07 Aug 2020
Parametric machines: a fresh approach to architecture search
Pietro Vertechi
M. Bergomi
27
2
0
06 Jul 2020
Computing the Testing Error without a Testing Set
C. Corneanu
Meysam Madadi
Sergio Escalera
Aleix M. Martinez
AAML
6
69
0
01 May 2020
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
273
13,368
0
25 Aug 2014
1