Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08428
Cited By
Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group
24 January 2019
Mario Lezcano Casado
David Martínez-Rubio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group"
38 / 38 papers shown
Title
Compact Recurrent Transformer with Persistent Memory
Edison Mucllari
Z. Daniels
David C. Zhang
Qiang Ye
CLL
VLM
49
0
0
02 May 2025
SpinQuant: LLM quantization with learned rotations
Zechun Liu
Changsheng Zhao
Igor Fedorov
Bilge Soran
Dhruv Choudhary
Raghuraman Krishnamoorthi
Vikas Chandra
Yuandong Tian
Tijmen Blankevoort
MQ
137
84
0
21 Feb 2025
HadamRNN: Binary and Sparse Ternary Orthogonal RNNs
Armand Foucault
Franck Mamalet
François Malgouyres
MQ
74
0
0
28 Jan 2025
Graph Unitary Message Passing
Haiquan Qiu
Yatao Bian
Quanming Yao
37
2
0
17 Mar 2024
Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation
Haoqi Wang
Zhizhong Li
Wayne Zhang
20
2
0
03 Aug 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
Convex optimization over a probability simplex
James Chok
G. Vasil
25
2
0
15 May 2023
Adaptive-saturated RNN: Remember more with less instability
Khoi Minh Nguyen-Duy
Quang-Cuong Pham
B. T. Nguyen
ODL
15
1
0
24 Apr 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Multi-View Independent Component Analysis with Shared and Individual Sources
T. Pandeva
Patrick Forré
CML
15
5
0
05 Oct 2022
Homotopy-based training of NeuralODEs for accurate dynamics discovery
Joon-Hyuk Ko
Hankyul Koh
Nojun Park
W. Jhe
46
8
0
04 Oct 2022
Random orthogonal additive filters: a solution to the vanishing/exploding gradient of deep neural networks
Andrea Ceni
ODL
23
3
0
03 Oct 2022
Entangled Residual Mappings
Mathias Lechner
Ramin Hasani
Z. Babaiee
Radu Grosu
Daniela Rus
T. Henzinger
Sepp Hochreiter
11
4
0
02 Jun 2022
Feedback Gradient Descent: Efficient and Stable Optimization with Orthogonality for DNNs
Fanchen Bu
D. Chang
28
6
0
12 May 2022
Path Development Network with Finite-dimensional Lie Group Representation
Han Lou
Siran Li
Hao Ni
16
7
0
02 Apr 2022
Subspace-based Representation and Learning for Phonotactic Spoken Language Recognition
Hung-Shin Lee
Yu Tsao
Shyh-Kang Jeng
Hsin-Min Wang
20
9
0
28 Mar 2022
projUNN: efficient method for training deep networks with unitary matrices
B. Kiani
Randall Balestriero
Yann LeCun
S. Lloyd
43
32
0
10 Mar 2022
Givens Coordinate Descent Methods for Rotation Matrix Learning in Trainable Embedding Indexes
Yunjiang Jiang
Han Zhang
Yiming Qiu
Yun Xiao
Bo Long
Wen-Yun Yang
19
6
0
09 Mar 2022
O-ViT: Orthogonal Vision Transformer
Yanhong Fei
Yingjie Liu
Xian Wei
Mingsong Chen
ViT
13
8
0
28 Jan 2022
Generalization Error Bounds for Iterative Recovery Algorithms Unfolded as Neural Networks
Ekkehard Schnoor
Arash Behboodi
Holger Rauhut
16
13
0
08 Dec 2021
Target Propagation via Regularized Inversion
Vincent Roulet
Zaïd Harchaoui
BDL
AAML
19
4
0
02 Dec 2021
Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu
Karan Goel
Christopher Ré
52
1,665
0
31 Oct 2021
Understanding Dimensional Collapse in Contrastive Self-supervised Learning
Li Jing
Pascal Vincent
Yann LeCun
Yuandong Tian
SSL
25
338
0
18 Oct 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
34
10
0
30 Jul 2021
RNNs of RNNs: Recursive Construction of Stable Assemblies of Recurrent Neural Networks
L. Kozachkov
Michaela Ennis
Jean-Jacques E. Slotine
19
18
0
16 Jun 2021
RotoGrad: Gradient Homogenization in Multitask Learning
Adrián Javaloy
Isabel Valera
21
86
0
03 Mar 2021
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
T. Konstantin Rusch
Siddhartha Mishra
19
89
0
02 Oct 2020
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
25
127
0
12 Aug 2020
Deep Isometric Learning for Visual Recognition
Haozhi Qi
Chong You
Xinyu Wang
Yi Ma
Jitendra Malik
VLM
30
53
0
30 Jun 2020
Recurrent Quantum Neural Networks
Johannes Bausch
21
151
0
25 Jun 2020
Lipschitz Recurrent Neural Networks
N. Benjamin Erichson
Omri Azencot
A. Queiruga
Liam Hodgkinson
Michael W. Mahoney
30
107
0
22 Jun 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
31
314
0
05 Feb 2020
Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform
Jun Li
Fuxin Li
S. Todorovic
24
102
0
04 Feb 2020
Fine-grained Optimization of Deep Neural Networks
Mete Ozay
ODL
14
1
0
22 May 2019
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
25
17
0
31 Aug 2018
Optimization on Submanifolds of Convolution Kernels in CNNs
Mete Ozay
Takayuki Okatani
45
46
0
22 Oct 2016
Learning Unitary Operators with Help From u(n)
Stephanie L. Hyland
Gunnar Rätsch
91
41
0
17 Jul 2016
1