Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.08584
Cited By
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
24 January 2019
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks"
50 / 192 papers shown
Title
Mallows-type model averaging: Non-asymptotic analysis and all-subset combination
Jingfu Peng
MoMe
37
0
0
05 May 2025
A Comprehensive Survey of Synthetic Tabular Data Generation
Ruxue Shi
Yili Wang
Mengnan Du
Xu Shen
Xin Wang
44
2
0
23 Apr 2025
Explainable Neural Networks with Guarantees: A Sparse Estimation Approach
Antoine Ledent
Peng Liu
FAtt
102
0
0
20 Feb 2025
MLPs at the EOC: Dynamics of Feature Learning
Dávid Terjék
MLT
41
0
0
18 Feb 2025
SNeRV: Spectra-preserving Neural Representation for Video
Jina Kim
Jihoo Lee
Je-Won Kang
35
3
0
03 Jan 2025
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
97
0
0
08 Nov 2024
Towards Understanding Why FixMatch Generalizes Better Than Supervised Learning
Jingyang Li
Jiachun Pan
Vincent Y. F. Tan
Kim-Chuan Toh
Pan Zhou
AAML
MLT
43
0
0
15 Oct 2024
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
28
2
0
11 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
61
0
0
08 Oct 2024
Tuning Frequency Bias of State Space Models
Annan Yu
Dongwei Lyu
S. H. Lim
Michael W. Mahoney
N. Benjamin Erichson
38
2
0
02 Oct 2024
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
40
0
0
24 Aug 2024
Many Perception Tasks are Highly Redundant Functions of their Input Data
Rahul Ramesh
Anthony Bisulco
Ronald W. DiTullio
Linran Wei
Vijay Balasubramanian
Kostas Daniilidis
Pratik Chaudhari
36
2
0
18 Jul 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
44
0
0
11 Jun 2024
On the Rashomon ratio of infinite hypothesis sets
Evzenie Coupkova
Mireille Boutin
29
1
0
27 Apr 2024
Implicit Bias of AdamW:
ℓ
∞
\ell_\infty
ℓ
∞
Norm Constrained Optimization
Shuo Xie
Zhiyuan Li
OffRL
35
12
0
05 Apr 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
Yunlong Yu
CLL
34
3
0
19 Mar 2024
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
33
4
0
12 Mar 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
38
0
0
08 Feb 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
33
4
0
07 Feb 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
32
7
0
02 Feb 2024
\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike \emph{sign} perceptrons neural networks
M. Stojnic
22
1
0
13 Dec 2023
Capacity of the treelike sign perceptrons neural networks with one hidden layer -- RDT based upper bounds
M. Stojnic
16
4
0
13 Dec 2023
Gradual Domain Adaptation: Theory and Algorithms
Yifei He
Haoxiang Wang
Bo Li
Han Zhao
CLL
49
5
0
20 Oct 2023
How to Protect Copyright Data in Optimization of Large Language Models?
T. Chu
Zhao-quan Song
Chiwun Yang
32
29
0
23 Aug 2023
Understanding Deep Neural Networks via Linear Separability of Hidden Layers
Chao Zhang
Xinyuan Chen
Wensheng Li
Lixue Liu
Wei Wu
Dacheng Tao
16
3
0
26 Jul 2023
Efficient SGD Neural Network Training via Sublinear Activated Neuron Identification
Lianke Qin
Zhao-quan Song
Yuanyuan Yang
20
9
0
13 Jul 2023
Training-Free Neural Active Learning with Initialization-Robustness Guarantees
Apivich Hemachandra
Zhongxiang Dai
Jasraj Singh
See-Kiong Ng
K. H. Low
AAML
30
6
0
07 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
24
3
0
26 May 2023
Fast Convergence in Learning Two-Layer Neural Networks with Separable Data
Hossein Taheri
Christos Thrampoulidis
MLT
16
3
0
22 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
36
13
0
11 May 2023
On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains
Yicheng Li
Zixiong Yu
Y. Cotronis
Qian Lin
53
13
0
04 May 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
13
1
0
06 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
26
29
0
27 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
36
0
0
24 Mar 2023
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
26
16
0
20 Feb 2023
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
19
5
0
20 Feb 2023
A Theoretical Understanding of Shallow Vision Transformers: Learning, Generalization, and Sample Complexity
Hongkang Li
M. Wang
Sijia Liu
Pin-Yu Chen
ViT
MLT
35
56
0
12 Feb 2023
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
Simone Bombari
Shayan Kiyani
Marco Mondelli
AAML
28
10
0
03 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
59
2
0
02 Feb 2023
Supervision Complexity and its Role in Knowledge Distillation
Hrayr Harutyunyan
A. S. Rawat
A. Menon
Seungyeon Kim
Surinder Kumar
22
12
0
28 Jan 2023
ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients
Guihong Li
Yuedong Yang
Kartikeya Bhardwaj
R. Marculescu
28
60
0
26 Jan 2023
Convergence beyond the over-parameterized regime using Rayleigh quotients
David A. R. Robin
Kevin Scaman
Marc Lelarge
17
3
0
19 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
45
11
0
30 Dec 2022
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Learning from Training Dynamics: Identifying Mislabeled Data Beyond Manually Designed Features
Qingrui Jia
Xuhong Li
Lei Yu
Jiang Bian
Penghao Zhao
Shupeng Li
Haoyi Xiong
Dejing Dou
NoLa
22
5
0
19 Dec 2022
Learning threshold neurons via the "edge of stability"
Kwangjun Ahn
Sébastien Bubeck
Sinho Chewi
Y. Lee
Felipe Suarez
Yi Zhang
MLT
31
36
0
14 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
30
3
0
08 Dec 2022
Bypass Exponential Time Preprocessing: Fast Neural Network Training via Weight-Data Correlation Preprocessing
Josh Alman
Jiehao Liang
Zhao-quan Song
Ruizhe Zhang
Danyang Zhuo
69
31
0
25 Nov 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
13
10
0
19 Nov 2022
Characterizing the Spectrum of the NTK via a Power Series Expansion
Michael Murray
Hui Jin
Benjamin Bowman
Guido Montúfar
30
11
0
15 Nov 2022
1
2
3
4
Next